人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義 3.1.1函數(shù)的概念及其表示(原卷版)_第1頁(yè)
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義 3.1.1函數(shù)的概念及其表示(原卷版)_第2頁(yè)
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義 3.1.1函數(shù)的概念及其表示(原卷版)_第3頁(yè)
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義 3.1.1函數(shù)的概念及其表示(原卷版)_第4頁(yè)
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義 3.1.1函數(shù)的概念及其表示(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第第頁(yè)3.1.1函數(shù)的概念課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①函數(shù)的概念;②了解函數(shù)的三要素;③掌握簡(jiǎn)單函數(shù)的定義域;④掌握求函數(shù)的值;⑤掌握區(qū)間的寫(xiě)法.通過(guò)本節(jié)課的學(xué)習(xí),掌握函數(shù)概念及函數(shù)的三要素,會(huì)判斷同一函數(shù),會(huì)求簡(jiǎn)單函數(shù)的定義域及值域.知識(shí)點(diǎn)01:函數(shù)的概念1、初中學(xué)習(xí)的函數(shù)的傳統(tǒng)定義設(shè)在一個(gè)變化的過(guò)程中,有兩個(gè)變量SKIPIF1<0和SKIPIF1<0,如果給定了一個(gè)SKIPIF1<0值,相應(yīng)地就有唯一確定的一個(gè)SKIPIF1<0值與之對(duì)應(yīng),那么我們就稱SKIPIF1<0是SKIPIF1<0的函數(shù),其中SKIPIF1<0是自變量,SKIPIF1<0是因變量.它們描述的是兩個(gè)變量之間的依賴關(guān)系.2、函數(shù)的近代定義一般地,設(shè)SKIPIF1<0,SKIPIF1<0是非空的實(shí)數(shù)集,如果對(duì)于集合SKIPIF1<0中的任意一個(gè)數(shù)SKIPIF1<0,按照某種確定的對(duì)應(yīng)關(guān)系SKIPIF1<0,在集合SKIPIF1<0中都有唯一確定的數(shù)SKIPIF1<0和它對(duì)應(yīng),那么就稱SKIPIF1<0為從集合SKIPIF1<0到集合SKIPIF1<0的一個(gè)函數(shù)(function),記作SKIPIF1<0,SKIPIF1<0.其中,SKIPIF1<0叫做自變量,SKIPIF1<0的取值范圍SKIPIF1<0叫做函數(shù)的定義域;與SKIPIF1<0的值相對(duì)應(yīng)的SKIPIF1<0值叫做函數(shù)值,函數(shù)值的集合SKIPIF1<0叫做函數(shù)的值域.顯然,值域是集合SKIPIF1<0的子集.函數(shù)的四個(gè)特征:①非空性:SKIPIF1<0,SKIPIF1<0必須為非空數(shù)集(注意不僅非空,還要是數(shù)集),定義域或值域?yàn)榭占暮瘮?shù)是不存在的.②任意性:即定義域中的每一個(gè)元素都有函數(shù)值.③單值性:每一個(gè)自變量有且僅有唯一的函數(shù)值與之對(duì)應(yīng)(可以多對(duì)一,不能一對(duì)多).④方向性:函數(shù)是一個(gè)從定義域到值域的對(duì)應(yīng)關(guān)系,如果改變這個(gè)對(duì)應(yīng)方向,那么新的對(duì)應(yīng)所確定的關(guān)系就不一定是函數(shù)關(guān)系.【即學(xué)即練1】(多選)下列四個(gè)圖象中,是函數(shù)圖象的是(

)A.

B.

C.

D.

知識(shí)點(diǎn)02:函數(shù)的三要素1、定義域:函數(shù)的定義域是自變量的取值范圍.2、對(duì)應(yīng)關(guān)系:對(duì)應(yīng)關(guān)系SKIPIF1<0是函數(shù)的核心,它是對(duì)自變量SKIPIF1<0實(shí)施“對(duì)應(yīng)操作”的“程序”或者“方法”.3、值域:與SKIPIF1<0的值相對(duì)應(yīng)的SKIPIF1<0值叫做函數(shù)值,函數(shù)值的集合SKIPIF1<0叫做函數(shù)的值域(range).【即學(xué)即練2】函數(shù)SKIPIF1<0的定義域?yàn)開(kāi)_____.知識(shí)點(diǎn)03:函數(shù)相等同一函數(shù):只有當(dāng)兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系都分別相同時(shí),這兩個(gè)函數(shù)才相等,即是同一個(gè)函數(shù).【即學(xué)即練3】下列四組函數(shù)中,表示同一函數(shù)的是(

)A.SKIPIF1<0與SKIPIF1<0B.SKIPIF1<0與SKIPIF1<0C.SKIPIF1<0與SKIPIF1<0D.SKIPIF1<0與SKIPIF1<0知識(shí)點(diǎn)04:區(qū)間的概念1區(qū)間的概念設(shè)SKIPIF1<0,SKIPIF1<0是實(shí)數(shù),且SKIPIF1<0,滿足SKIPIF1<0的實(shí)數(shù)SKIPIF1<0的全體,叫做閉區(qū)間,記作SKIPIF1<0,即,SKIPIF1<0。如圖:SKIPIF1<0,SKIPIF1<0叫做區(qū)間的端點(diǎn).在數(shù)軸上表示一個(gè)區(qū)間時(shí),若區(qū)間包括端點(diǎn),則端點(diǎn)用實(shí)心點(diǎn)表示;若區(qū)間不包括端點(diǎn),則端點(diǎn)用空心點(diǎn)表示.集合SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0區(qū)間SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<02含有無(wú)窮大的表示全體實(shí)數(shù)也可用區(qū)間表示為SKIPIF1<0,符號(hào)“SKIPIF1<0”讀作“正無(wú)窮大”,“SKIPIF1<0”讀作“負(fù)無(wú)窮大”,即SKIPIF1<0。集合SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0區(qū)間SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0【即學(xué)即練4】已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型01函數(shù)關(guān)系的判斷【典例1】若函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,值域?yàn)镾KIPIF1<0,則SKIPIF1<0的圖象可能是(

)A. B.C. D.【典例2】已知集合SKIPIF1<0,SKIPIF1<0,下列對(duì)應(yīng)關(guān)系中,從SKIPIF1<0到SKIPIF1<0的函數(shù)為(

)A.f:SKIPIF1<0 B.f:SKIPIF1<0C.f:SKIPIF1<0 D.f:SKIPIF1<0【變式1】(多選)下列對(duì)應(yīng)中是函數(shù)的是(

).A.SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0B.SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,其中y為不大于x的最大整數(shù),SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0題型02集合與區(qū)間的轉(zhuǎn)化【典例1】已知全集SKIPIF1<0,集合SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】若集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1】全集SKIPIF1<0,集合SKIPIF1<0,集合SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0題型03同一個(gè)函數(shù)【典例1】下列各組函數(shù)表示相同函數(shù)的是(

)A.SKIPIF1<0和SKIPIF1<0 B.SKIPIF1<0和SKIPIF1<0C.SKIPIF1<0和SKIPIF1<0 D.SKIPIF1<0和SKIPIF1<0【典例2】(多選)下面各組函數(shù)表示同一函數(shù)的是(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0(SKIPIF1<0),SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【變式1】下列每組中的函數(shù)是同一個(gè)函數(shù)的是(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0題型04求函數(shù)值【典例1】若函數(shù)SKIPIF1<0,則SKIPIF1<0_________.【典例2】若SKIPIF1<0,則SKIPIF1<0=______.【變式1】設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】已知SKIPIF1<0,SKIPIF1<0.(1)計(jì)算:SKIPIF1<0____________;(2)計(jì)算:SKIPIF1<0____________.題型05根據(jù)函數(shù)值請(qǐng)求自變量或參數(shù)【典例1】若函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則此函數(shù)的定義域?yàn)椋?/p>

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(多選)若函數(shù)SKIPIF1<0在定義域SKIPIF1<0上的值域?yàn)镾KIPIF1<0,則區(qū)間SKIPIF1<0可能為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1】已知函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則x的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型06函數(shù)的定義域(具體函數(shù)的定義域)【典例1】已知函數(shù)SKIPIF1<0的定義域?yàn)椋?/p>

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】函數(shù)SKIPIF1<0的定義域?yàn)開(kāi)_____.【變式1】函數(shù)SKIPIF1<0的定義域?yàn)開(kāi)_______.題型07函數(shù)的定義域(抽象函數(shù)的定義域)【典例1】已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0的定義域?yàn)開(kāi)_____.【典例2】若SKIPIF1<0的定義域?yàn)镾KIPIF1<0,求SKIPIF1<0的定義域.【變式1】(1)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0的定義域?yàn)開(kāi)_____.(2)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0的定義域?yàn)開(kāi)_____.題型08函數(shù)的定義域(復(fù)合函數(shù)的定義域)【典例1】若函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0的定義域?yàn)椋?/p>

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】已知函數(shù)SKIPIF1<0)的定義域?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0的定義域?yàn)椋ǎ〢.(SKIPIF1<0,4)B.[SKIPIF1<0,4)C.(SKIPIF1<0,6)D.(SKIPIF1<0,2)【變式1】已知函數(shù)SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域?yàn)開(kāi)_____.題型09函數(shù)的定義域(實(shí)際問(wèn)題中的定義域)【典例1】已知等腰三角形的周長(zhǎng)為SKIPIF1<0,底邊長(zhǎng)SKIPIF1<0是腰長(zhǎng)SKIPIF1<0的函數(shù),則函數(shù)的定義域?yàn)?)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】周長(zhǎng)為定值SKIPIF1<0的矩形,它的面積SKIPIF1<0是這個(gè)矩形的一邊長(zhǎng)SKIPIF1<0的函數(shù),則這個(gè)函數(shù)的定義域是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1】如圖,某小區(qū)有一塊底邊和高均為40m的銳角三角形空地,現(xiàn)規(guī)劃在空地內(nèi)種植一邊長(zhǎng)為SKIPIF1<0(單位:m)的矩形草坪(陰影部分),要求草坪面積不小于SKIPIF1<0,則SKIPIF1<0的取值范圍為_(kāi)_____.題型10函數(shù)的值域(常見(jiàn)(一次,二次,反比例)函數(shù)的值域)【典例1】函數(shù)SKIPIF1<0,則SKIPIF1<0的值域?yàn)椋?/p>

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】求下列函數(shù)的定義域、值域,并畫(huà)出圖象:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0;(5)SKIPIF1<0;(6)SKIPIF1<0.【變式1】例題3.求下列函數(shù)的值域.(1)SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0.題型11函數(shù)的值域(根式型函數(shù)的值域)【典例1】函數(shù)SKIPIF1<0的值域?yàn)椋?/p>

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】求函數(shù)SKIPIF1<0的值域?yàn)開(kāi)________.【變式1】函數(shù)SKIPIF1<0的值域是___________.題型12函數(shù)的值域(分式型函數(shù)的值域)【典例1】函數(shù)ySKIPIF1<0的值域是()A.(﹣∞,+∞) B.(﹣∞,SKIPIF1<0)∪(SKIPIF1<0,+∞)C.(﹣∞,SKIPIF1<0)∪(SKIPIF1<0,+∞) D.(﹣∞,SKIPIF1<0)∪(SKIPIF1<0,+∞)【典例2】(1)求函數(shù)SKIPIF1<0的值域;(2)求函數(shù)SKIPIF1<0的值域.【變式1】求函數(shù)SKIPIF1<0的值域______________.【變式2】函數(shù)SKIPIF1<0的值域是___________.題型13根據(jù)函數(shù)的值域求定義域【典例1】已知函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(多選)已知函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則其定義域可能是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1】(多選)若函數(shù)SKIPIF1<0在定義域SKIPIF1<0上的值域?yàn)镾KIPIF1<0,則區(qū)間SKIPIF1<0可能為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型14重點(diǎn)方法之換元法求值域【典例1】函數(shù)SKIPIF1<0的值域?yàn)椋?/p>

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】求函數(shù)SKIPIF1<0的值域.題型15重點(diǎn)方法之分離常數(shù)法求值域【典例1】求函數(shù)SKIPIF1<0的值域.【典例2】求下列函數(shù)的值域:SKIPIF1<0題型16數(shù)學(xué)思想方法(數(shù)形結(jié)合的思想方法)【典例1】已知函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】若函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,則其值域?yàn)椋?/p>

).A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0題型17易錯(cuò)題(換元必?fù)Q范圍)【典例1】求下列函數(shù)的值域:SKIPIF1<0.【典例2】函數(shù)SKIPIF1<0的值域?yàn)開(kāi)__________.3.1.1函數(shù)的概念A(yù)夯實(shí)基礎(chǔ)一、單選題1.已知函數(shù)SKIPIF1<0,那么SKIPIF1<0的值(

)A.3 B.5 C.72.函數(shù)SKIPIF1<0的定義域是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<03.下列各函數(shù)中,與函數(shù)SKIPIF1<0表示同一函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.已知高斯取整函數(shù)SKIPIF1<0,則SKIPIF1<0的值為(

)A.2 B.3 C.4 D.55.下表給出了x與SKIPIF1<0和SKIPIF1<0的對(duì)應(yīng)關(guān)系,根據(jù)表格可知SKIPIF1<0的值為(

)x1234x1234SKIPIF1<03142SKIPIF1<04321A.1 B.2 C.3 D.46.下列對(duì)應(yīng)是從集合A到集合B的函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<07.若函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域是(

)A.[-4,1] B.[-3,1] C.[-3,1) D.[-4,1)8.函數(shù)SKIPIF1<0的值域?yàn)椋?/p>

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題9.若函數(shù)SKIPIF1<0定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則下列結(jié)果正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.中國(guó)清朝數(shù)學(xué)家李善蘭在1859年翻譯《代數(shù)學(xué)》中首次將“function”譯做:“函數(shù)”,沿用至今,為什么這么翻譯,書(shū)中解釋說(shuō)“凡此變數(shù)中函彼變數(shù)者,則此為彼之函數(shù)”.1930年美國(guó)人給出了我們課本中所學(xué)的集合論的函數(shù)定義.已知集合M={SKIPIF1<01,1,2,4},N={1,2,4,16},給出下列四個(gè)對(duì)應(yīng)法則,請(qǐng)由函數(shù)定義判斷,其中能構(gòu)成從M到N的函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0三、填空題11.設(shè)二次函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的值域是SKIPIF1<0,則SKIPIF1<0的最小值是____________.12.函數(shù)SKIPIF1<0的值域?yàn)開(kāi)__________.四、解答題13.已知函數(shù)SKIPIF1<0的定義域?yàn)锳,集合SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0;(2)若SKIPIF1<0,求a的取值范圍.14.已知函數(shù)SKIPIF1<0的值域?yàn)閇1,3],求SKIPIF1<0的值B能力提升1.若函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,值域?yàn)镾KIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.函數(shù)SKIPIF1<0的值域?yàn)锳.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.設(shè)SKIPIF1<0,用SKIPIF1<0表示不超過(guò)SKIPIF1<0的最大整數(shù),則SKIPIF1<0稱為高斯函數(shù).例如:SKIPIF1<0,SKIPIF1<0,已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的值域?yàn)椋?/p>

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0,SKIPIF1<0的值;(2)求證:SKIPIF1<0的定值;(3)求SKIPIF1<0的值.C綜合素養(yǎng)1.歐拉函數(shù)SKIPIF1<0的函數(shù)值等于所有不超過(guò)正整數(shù)SKIPIF1<0,且與SKIPIF1<0互素的正整數(shù)的個(gè)數(shù),例如,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(多選)對(duì)于定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0,若同時(shí)滿足下列條件:①SKIPIF1<0,SKIPIF1<0;②SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則稱函數(shù)SKIPIF1<0為“SKIPIF1<0函數(shù)”.下列結(jié)論正確的是(

)A.若SKIPIF1<0為“SKIPIF1<0函數(shù)”,則其圖象恒過(guò)定點(diǎn)SKIPIF1<0B.函數(shù)SKIPIF1<0在SKIPIF1<0上是“SKIPIF1<0函數(shù)”C.函數(shù)SKIPIF1<0在SKIPIF1<0上是“SKIPIF1<0函數(shù)”(SKIPIF1<0表示不大于SKIPIF1<0的最大整數(shù))D.若SKIPIF1<0為“SKIPIF1<0函數(shù)”,則SKIPIF1<0一定是SKIPIF1<0上的增函數(shù)3.已知定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0,對(duì)于任意的SKIPIF1<0恒有SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的值;(2)若SKIPIF1<0,求SKIPIF1<0的值.4.如果一個(gè)函數(shù)的值域與其定義域相同,則稱該函數(shù)為“同域函數(shù)”.已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0且SKIPIF1<0.(Ⅰ)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的定義域;(Ⅱ)當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0為“同域函數(shù)”,求實(shí)數(shù)SKIPIF1<0的值;(Ⅲ)若存在實(shí)數(shù)SKIPIF1<0且SKIPIF1<0,使得SKIPIF1<0為“同域函數(shù)”,求實(shí)數(shù)SKIPIF1<0的取值范圍.

3.1.2函數(shù)的表示法課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①了解函數(shù)的三種表示方法及特點(diǎn);②掌握求函數(shù)解析式的常用方法③了解與認(rèn)識(shí)分段函數(shù)及其定義域④會(huì)用分析法與圖象法表示分段函數(shù),并能掌握分段函數(shù)的相關(guān)性質(zhì).通過(guò)本節(jié)課的學(xué)習(xí),熟練掌握函數(shù)的三種表示方法,會(huì)求函數(shù)的解析式,掌握分段函數(shù)的解析法與圖象法的表示方法與性質(zhì).知識(shí)點(diǎn)01:函數(shù)的表示法1、解析法:用數(shù)學(xué)表達(dá)式表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系.2、列表法:列出表格來(lái)表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系.3、圖象法:用圖象表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系.優(yōu)點(diǎn)缺點(diǎn)聯(lián)系解析法①簡(jiǎn)明、全面的概括了變量之間的關(guān)系;②可以通過(guò)解析式求出在定義域內(nèi)任意自變量所對(duì)應(yīng)的函數(shù)值;③便于利用解析式研究函數(shù)的性質(zhì);①并不是所有的函數(shù)都有解析式;②不能直觀地觀察到函數(shù)的變化規(guī)律;解析法、圖象法、列表法各有各的優(yōu)缺點(diǎn),面對(duì)實(shí)際情境時(shí),我們要根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù).圖象法①能直觀、形象地表示自變量的變化情況及相適應(yīng)的函數(shù)值的變化趨勢(shì);②可以直接應(yīng)用圖象來(lái)研究函數(shù)的性質(zhì);①并不是所有的函數(shù)都能畫(huà)出圖象;②不能精確地求出某一自變量相應(yīng)的函數(shù)值;列表法①不需要計(jì)算就可以直接看出與自變量的值對(duì)應(yīng)的函數(shù)值;①不夠全面,只能表示自變量取較少的有限值的對(duì)應(yīng)關(guān)系;②不能明顯地展示出因變量隨自變量變化的規(guī)律;知識(shí)點(diǎn)02:求函數(shù)解析式1、待定系數(shù)法:若已知函數(shù)的類型(如一次函數(shù)、二次函數(shù),反比例等),可用待定系數(shù)法.2、換元法:主要用于解決已知SKIPIF1<0這類復(fù)合函數(shù)的解析式,求函數(shù)SKIPIF1<0的解析式的問(wèn)題,在使用換元法時(shí)特別注意,換元必?fù)Q范圍.3、配湊法:由已知條件SKIPIF1<0,可將SKIPIF1<0改寫(xiě)成關(guān)于SKIPIF1<0的表達(dá)式,4、方程組(消去)法:主要解決已知SKIPIF1<0與SKIPIF1<0、SKIPIF1<0、SKIPIF1<0……的方程,求SKIPIF1<0解析式。【即學(xué)即練1】已知SKIPIF1<0,則函數(shù)SKIPIF1<0_______,SKIPIF1<0=_______.知識(shí)點(diǎn)03:分段函數(shù)對(duì)于函數(shù)SKIPIF1<0,若自變量在定義域內(nèi)的在不同范圍取值時(shí),函數(shù)的對(duì)應(yīng)關(guān)系也不相同,則稱函數(shù)SKIPIF1<0叫分段函數(shù).注:(1)分段函數(shù)是一個(gè)函數(shù),只是自變量在不同范圍取值時(shí),函數(shù)的對(duì)應(yīng)關(guān)系不相同;(2)在書(shū)寫(xiě)時(shí)要指明各段函數(shù)自變量的取值范圍;(3)分段函數(shù)的定義域是所以自變量取值區(qū)間的并集.【即學(xué)即練2】已知函數(shù)SKIPIF1<0,則SKIPIF1<0_________.知識(shí)點(diǎn)04:函數(shù)的圖象1、函數(shù)圖象的平移變換(左“+”右“-”;上“+”下“-”)①SKIPIF1<0②SKIPIF1<0③SKIPIF1<0④SKIPIF1<0注:左右平移只能單獨(dú)一個(gè)SKIPIF1<0加或者減,注意當(dāng)SKIPIF1<0前系數(shù)不為1,需將系數(shù)提取到外面.2、函數(shù)圖象的對(duì)稱變換①SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象;②SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象;③SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象;3、函數(shù)圖象的翻折變換(絕對(duì)值變換)①SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象;(口訣;以SKIPIF1<0軸為界,保留SKIPIF1<0軸上方的圖象;將SKIPIF1<0軸下方的圖象翻折到SKIPIF1<0軸上方)②SKIPIF1<0的圖象SKIPIF1<0SKIPIF1<0的圖象.(口訣;以SKIPIF1<0軸為界,去掉SKIPIF1<0軸左側(cè)的圖象,保留SKIPIF1<0軸右側(cè)的圖象;將SKIPIF1<0軸右側(cè)圖象翻折到SKIPIF1<0軸左側(cè);本質(zhì)是個(gè)偶函數(shù))【即學(xué)即練3】函數(shù)SKIPIF1<0的部分圖象大致是(

)A.B.C.D.題型01函數(shù)的三種表示法的應(yīng)用【典例1】已知邊長(zhǎng)為1的正方形SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),動(dòng)點(diǎn)SKIPIF1<0在正方形SKIPIF1<0邊上沿SKIPIF1<0運(yùn)動(dòng).設(shè)點(diǎn)SKIPIF1<0經(jīng)過(guò)的路程為SKIPIF1<0.SKIPIF1<0的面積為SKIPIF1<0.則SKIPIF1<0與SKIPIF1<0的函數(shù)圖象大致為圖中的()A.

B.

C.

D.

【典例2】如圖中的圖象所表示的函數(shù)的解析式為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例3】已知函數(shù)SKIPIF1<0,SKIPIF1<0分別由下表給出,SKIPIF1<0012SKIPIF1<0121SKIPIF1<0012SKIPIF1<0210則SKIPIF1<0_____________;滿足SKIPIF1<0的SKIPIF1<0的值是_____________.【變式1】如圖,SKIPIF1<0是邊長(zhǎng)為2的等邊三角形,點(diǎn)SKIPIF1<0由點(diǎn)SKIPIF1<0沿線段SKIPIF1<0向點(diǎn)SKIPIF1<0移動(dòng),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0的垂線SKIPIF1<0,設(shè)SKIPIF1<0,記位于直線SKIPIF1<0左側(cè)的圖形的面積為SKIPIF1<0,那么SKIPIF1<0與SKIPIF1<0的函數(shù)關(guān)系的圖象大致是(

)A.B.C.D.【變式2】某校要召開(kāi)學(xué)生代表大會(huì),規(guī)定各班每SKIPIF1<0人推選一名代表,當(dāng)班人數(shù)除以SKIPIF1<0的余數(shù)大于SKIPIF1<0時(shí),再增選一名代表,則各班推選代表人數(shù)SKIPIF1<0與該班人數(shù)SKIPIF1<0之間的函數(shù)關(guān)系用取整函數(shù)SKIPIF1<0(SKIPIF1<0表示不大于SKIPIF1<0的最大整數(shù),如SKIPIF1<0,SKIPIF1<0)可表示為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型02求函數(shù)的解析式(待定系數(shù)法)【典例1】(多選)已知函數(shù)SKIPIF1<0是一次函數(shù),滿足SKIPIF1<0,則SKIPIF1<0的解析式可能為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】若二次函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的表達(dá)式為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1】若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型03求函數(shù)的解析式(換元法)【典例1】已知SKIPIF1<0,則函數(shù)SKIPIF1<0的解析式為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】已知SKIPIF1<0,求SKIPIF1<0.題型04求函數(shù)的解析式(配湊法)【典例1】已知SKIPIF1<0,則SKIPIF1<0_______.【典例2】已知SKIPIF1<0,則SKIPIF1<0(

)A.6 B.3 C.11 D.10題型05求函數(shù)的解析式(方程組(消去)法)【典例1】已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,對(duì)任意SKIPIF1<0均滿足:SKIPIF1<0則函數(shù)SKIPIF1<0解析式為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】已知SKIPIF1<0,求SKIPIF1<0的解析式【變式1】已知函數(shù)SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)設(shè)函數(shù)SKIPIF1<0,若對(duì)任意SKIPIF1<0,SKIPIF1<0恒成立,求實(shí)數(shù)m的取值范圍.題型06求函數(shù)的解析式(賦值法求抽象函數(shù)的解析式)【典例1】定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,并且對(duì)任意實(shí)數(shù)SKIPIF1<0,SKIPIF1<0都有SKIPIF1<0,求SKIPIF1<0的解析式.【典例2】已知函數(shù)SKIPIF1<0滿足:對(duì)一切實(shí)數(shù)SKIPIF1<0、SKIPIF1<0,均有SKIPIF1<0成立,且SKIPIF1<0.求函數(shù)SKIPIF1<0的表達(dá)式;【變式1】寫(xiě)出一個(gè)滿足:SKIPIF1<0的函數(shù)解析式為_(kāi)_____.【變式2】已知函數(shù)SKIPIF1<0對(duì)一切的實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,都滿足SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求SKIPIF1<0的解析式;(3)求SKIPIF1<0在SKIPIF1<0上的值域.題型07分段函數(shù)(求分段函數(shù)的值)【典例1】已知函數(shù)SKIPIF1<0,則SKIPIF1<0______.【典例2】已知函數(shù)SKIPIF1<0,則SKIPIF1<0的值為_(kāi)_____.題型08分段函數(shù)(已知分段函數(shù)的值求參數(shù))【典例1】已知函數(shù)SKIPIF1<0,若SKIPIF1<0的最小值為1,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】已知函數(shù)SKIPIF1<0無(wú)最大值,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例3】已知函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0的最大值是________.題型09分段函數(shù)(分段函數(shù)的值域或最值)【典例1】函數(shù)SKIPIF1<0的最小值是__________.【典例2】已知函數(shù)SKIPIF1<0SKIPIF1<0的最大值為SKIPIF1<0SKIPIF1<0的最小值為SKIPIF1<0,則SKIPIF1<0______.【變式1】(多選)設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0存在最小值時(shí),實(shí)數(shù)SKIPIF1<0的值可能是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.1題型10分段函數(shù)(解分段不等式)【典例1】設(shè)SKIPIF1<0,則不等式SKIPIF1<0的解集是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集___________.【變式1】已知SKIPIF1<0,則使SKIPIF1<0成立的SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式2】已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的最小值;(2)若SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,求k的取值范圍.題型11函數(shù)圖象(函數(shù)圖象識(shí)別)【典例1】設(shè)SKIPIF1<0均為非零實(shí)數(shù),則直線SKIPIF1<0和SKIPIF1<0在同一坐標(biāo)系下的圖形可能是(

).A.B.C.D.【典例2】函數(shù)SKIPIF1<0的圖象大致形狀是(

)A.B.C.D.【變式1】已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的圖像是(

)A.B.C.D.題型12函數(shù)圖象(畫(huà)出具體函數(shù)圖象)【典例1】給定函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)在所給坐標(biāo)系(1)中畫(huà)出函數(shù)SKIPIF1<0,SKIPIF1<0的大致圖象;(不需列表,直接畫(huà)出.)(2)SKIPIF1<0,用SKIPIF1<0表示SKIPIF1<0,SKIPIF1<0中的較小者,記為SKIPIF1<0,請(qǐng)分別用解析法和圖象法表示函數(shù)SKIPIF1<0.(SKIPIF1<0的圖象畫(huà)在坐標(biāo)系(2)中)(3)直接寫(xiě)出函數(shù)SKIPIF1<0的值域.【典例2】已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的值;(2)畫(huà)出函數(shù)的圖象并寫(xiě)出函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的值域;(3)若函數(shù)SKIPIF1<0,求函數(shù)SKIPIF1<0在SKIPIF1<0上最大值.【變式1】已知函數(shù)SKIPIF1<0,其中[x]表示不超過(guò)SKIPIF1<0的最大整數(shù),例如SKIPIF1<0(1)將SKIPIF1<0的解析式寫(xiě)成分段函數(shù)的形式;(2)請(qǐng)?jiān)谌鐖D所示的平面直角坐標(biāo)系中作出函數(shù)SKIPIF1<0的圖象;(3)根據(jù)圖象寫(xiě)出函數(shù)SKIPIF1<0的值域.題型13函數(shù)圖象(根據(jù)實(shí)際問(wèn)題做出函數(shù)圖象)【典例1】如圖為某無(wú)人機(jī)飛行時(shí),從某時(shí)刻開(kāi)始15分鐘內(nèi)的速度SKIPIF1<0(單位:米/分鐘)與時(shí)間SKIPIF1<0(單位:分鐘)的關(guān)系.若定義“速度差函數(shù)”SKIPIF1<0為無(wú)人機(jī)在時(shí)間段SKIPIF1<0內(nèi)的最大速度與最小速度的差,則SKIPIF1<0的圖像為(

)A.B.C.D.【典例2】如圖,點(diǎn)SKIPIF1<0在邊長(zhǎng)為1的正方形的邊上運(yùn)動(dòng),SKIPIF1<0是SKIPIF1<0的中點(diǎn),則當(dāng)SKIPIF1<0沿SKIPIF1<0運(yùn)動(dòng)時(shí),點(diǎn)SKIPIF1<0經(jīng)過(guò)的路程SKIPIF1<0與SKIPIF1<0的面積SKIPIF1<0的函數(shù)SKIPIF1<0的圖象大致是下圖中的A.B.C.D.【變式1】如圖,公園里有一處扇形花壇,小明同學(xué)從SKIPIF1<0點(diǎn)出發(fā),沿花壇外側(cè)的小路順時(shí)針?lè)较騽蛩僮吡艘蝗?路線為SKIPIF1<0),則小明到SKIPIF1<0點(diǎn)的直線距離SKIPIF1<0與他從SKIPIF1<0點(diǎn)出發(fā)后運(yùn)動(dòng)的時(shí)間SKIPIF1<0之間的函數(shù)圖象大致是(

)A.B.C.D.題型14函數(shù)圖象(函數(shù)圖象的變換)【典例1】(多選)下列函數(shù)圖像經(jīng)過(guò)變換后,過(guò)原點(diǎn)的是(

)A.SKIPIF1<0向右平移SKIPIF1<0個(gè)單位 B.SKIPIF1<0向左平移SKIPIF1<0個(gè)單位C.SKIPIF1<0向上平移SKIPIF1<0個(gè)單位 D.SKIPIF1<0向下平移SKIPIF1<0個(gè)單位【典例2】已知函數(shù)SKIPIF1<0定義在SKIPIF1<0上的圖象如圖所示,請(qǐng)分別畫(huà)出下列函數(shù)的圖象:

(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0;(5)SKIPIF1<0;(6)SKIPIF1<0.【變式1】將函數(shù)SKIPIF1<0的圖象向左平移1個(gè)單位,再向下平移3個(gè)單位長(zhǎng)度,所得的函數(shù)圖象對(duì)應(yīng)的解析式為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0題型15函數(shù)圖象(根據(jù)圖象選擇解析式)【典例1】我國(guó)著名數(shù)學(xué)家華羅庚曾說(shuō):“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休.”在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象來(lái)研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來(lái)研究函數(shù)圖象的特征.我們從這個(gè)商標(biāo)中抽象出一個(gè)圖象如圖,其對(duì)應(yīng)的函數(shù)可能是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】若函數(shù)SKIPIF1<0的大致圖象如圖所示,則SKIPIF1<0的解析式可能是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1】已知某函數(shù)SKIPIF1<0的部分圖象如圖所示,則下列函數(shù)解析式符合該圖象特征的是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0題型16新定義(新文化題)【典例1】十九世紀(jì)德國(guó)數(shù)學(xué)家狄利克雷提出了“狄利克雷函數(shù)”SKIPIF1<0它在現(xiàn)代數(shù)學(xué)的發(fā)展過(guò)程中有著重要意義,若函數(shù)SKIPIF1<0,則下列實(shí)數(shù)不屬于函數(shù)SKIPIF1<0值域的是(

)A.3 B.2 C.1 D.0【典例2】黎曼函數(shù)是一個(gè)特殊的函數(shù),由德國(guó)著名的數(shù)學(xué)家波恩哈德·黎曼發(fā)現(xiàn)提出,在高等數(shù)學(xué)中有著廣泛的應(yīng)用.其定義黎曼函數(shù)SKIPIF1<0為:當(dāng)SKIPIF1<0(SKIPIF1<0為正整數(shù),SKIPIF1<0是既約真分?jǐn)?shù))時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0為SKIPIF1<0上的無(wú)理數(shù)時(shí)SKIPIF1<0.已知SKIPIF1<0、SKIPIF1<0、SKIPIF1<0都是區(qū)間SKIPIF1<0內(nèi)的實(shí)數(shù),則下列不等式一定正確的是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1】高斯是德國(guó)著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),他和阿基米德,牛頓并列為世界三大數(shù)學(xué)家,用其名字命名的“高斯函數(shù)”為:對(duì)于實(shí)數(shù)SKIPIF1<0,符號(hào)SKIPIF1<0表示不超過(guò)SKIPIF1<0的最大整數(shù),則SKIPIF1<0稱為高斯函數(shù),例如SKIPIF1<0,SKIPIF1<0,定義函數(shù)SKIPIF1<0,則下列命題中正確的序號(hào)是________.①函數(shù)SKIPIF1<0的最大值為SKIPIF1<0;

②函數(shù)SKIPIF1<0的最小值為SKIPIF1<0;③函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0有無(wú)數(shù)個(gè)交點(diǎn)

④SKIPIF1<0題型17重點(diǎn)方法(換元法)【典例1】若SKIPIF1<0,則SKIPIF1<0=________.【典例2】已知SKIPIF1<0,則SKIPIF1<0______.【變式2】已知SKIPIF1<0,則SKIPIF1<0___________.題型18重點(diǎn)方法(消去法)【典例1】若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(

)A.0 B.2 C.3 D.SKIPIF1<0【典例2】已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0__________.【變式1】已知SKIPIF1<0,則函數(shù)SKIPIF1<0的解析式為_(kāi)__________.題型19數(shù)學(xué)思想方法(數(shù)形結(jié)合法)【典例1】(多選

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論