新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題10 解析幾何專題(新定義)(解析版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題10 解析幾何專題(新定義)(解析版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題10 解析幾何專題(新定義)(解析版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題10 解析幾何專題(新定義)(解析版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題10 解析幾何專題(新定義)(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩29頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題10解析幾何專題(新定義)一、單選題1.(2023春·浙江·高三校聯(lián)考開(kāi)學(xué)考試)2022年卡塔爾世界杯會(huì)徽(如圖)正視圖近似于伯努利雙紐線,定義在平面直角坐標(biāo)系xOy中(O為坐標(biāo)原點(diǎn)),把到定點(diǎn)SKIPIF1<0和SKIPIF1<0距離之積等于SKIPIF1<0的點(diǎn)的軌跡稱為雙紐線,記為Γ,已知SKIPIF1<0為雙紐線Γ上任意一點(diǎn),有下列命題:①雙紐線Γ的方程為SKIPIF1<0;②SKIPIF1<0面積最大值為SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0的最大值為SKIPIF1<0.其中所有正確命題的序號(hào)是(

)A.①② B.①②③C.②③④ D.①②③④【答案】D【分析】由已知SKIPIF1<0,代入坐標(biāo)整理即可得出方程,判斷①;根據(jù)正弦定理,結(jié)合已知條件,即可判斷②;根據(jù)面積公式,結(jié)合②的結(jié)論,即可判斷③;根據(jù)余弦定理,以及向量可推得SKIPIF1<0,即可判斷④.【詳解】對(duì)于①,由定義SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,整理可得SKIPIF1<0,所以雙紐線Γ的方程為SKIPIF1<0,故①正確;對(duì)于②,SKIPIF1<0SKIPIF1<0,故②正確;對(duì)于③,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故③正確;對(duì)于④,SKIPIF1<0中,由余弦定理可得SKIPIF1<0,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.所以,SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,整理可得SKIPIF1<0,所以SKIPIF1<0,故④正確.故選:D.2.(2023春·四川達(dá)州·高二四川省宣漢中學(xué)校考開(kāi)學(xué)考試)定義:橢圓SKIPIF1<0中長(zhǎng)度為整數(shù)的焦點(diǎn)弦(過(guò)焦點(diǎn)的弦)為“好弦”.則橢圓SKIPIF1<0中所有“好弦”的長(zhǎng)度之和為(

)A.162 B.166 C.312 D.364【答案】B【分析】根據(jù)題意分類討論結(jié)合韋達(dá)定理求弦長(zhǎng)的取值范圍,進(jìn)而判斷“好弦”的長(zhǎng)度的取值可能,注意橢圓對(duì)稱性的應(yīng)用.【詳解】由已知可得SKIPIF1<0,所以SKIPIF1<0,即橢圓SKIPIF1<0的右焦點(diǎn)坐標(biāo)為SKIPIF1<0,對(duì)于過(guò)右焦點(diǎn)的弦SKIPIF1<0,則有:當(dāng)弦SKIPIF1<0與SKIPIF1<0軸重合時(shí),則弦長(zhǎng)SKIPIF1<0,當(dāng)弦SKIPIF1<0不與SKIPIF1<0軸重合時(shí),設(shè)SKIPIF1<0,聯(lián)立方程SKIPIF1<0,消去x得:SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,∵SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,綜上所述:SKIPIF1<0,故弦長(zhǎng)為整數(shù)有SKIPIF1<0,由橢圓的對(duì)稱性可得:“好弦”的長(zhǎng)度和為SKIPIF1<0.故選:B.3.(2023秋·湖南郴州·高二校考期末)城市的許多街道是互相垂直或平行的,因此往往不能沿直線行走到達(dá)目的地,只能按直角拐彎的方式行走.如果按照街道的垂直和平行方向建立平面直角坐標(biāo)系,對(duì)兩點(diǎn)SKIPIF1<0,定義兩點(diǎn)間“距離”為SKIPIF1<0,則平面內(nèi)與SKIPIF1<0軸上兩個(gè)不同的定點(diǎn)SKIPIF1<0的“距離”之和等于定值(大于SKIPIF1<0)的點(diǎn)的軌跡可以是(

)A. B.C. D.【答案】A【分析】分橫坐標(biāo)在SKIPIF1<0、SKIPIF1<0之外(內(nèi))的區(qū)域兩種情況討論,結(jié)合所給距離公式判斷即可.【詳解】解:根據(jù)題意,橫坐標(biāo)在SKIPIF1<0、SKIPIF1<0之外的區(qū)域,不能出現(xiàn)與SKIPIF1<0軸垂直的線段,否則該線段上的點(diǎn)與SKIPIF1<0、SKIPIF1<0的“距離”之和不會(huì)是定值;橫坐標(biāo)在SKIPIF1<0、SKIPIF1<0之內(nèi)的區(qū)域,則必須與SKIPIF1<0軸平行,否則該線段上的點(diǎn)與SKIPIF1<0、SKIPIF1<0的“距離”之和不會(huì)是定值.故選:A.4.(2022·江蘇·高二專題練習(xí))畫法幾何的創(chuàng)始人——法國(guó)數(shù)學(xué)家加斯帕爾·蒙日發(fā)現(xiàn):與橢圓相切的兩條垂直切線的交點(diǎn)的軌跡是以橢圓中心為圓心的圓.我們通常把這個(gè)圓稱為該橢圓的蒙日?qǐng)A.已知橢圓SKIPIF1<0:SKIPIF1<0的蒙日?qǐng)A方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為橢圓SKIPIF1<0的左、右焦點(diǎn).離心率為SKIPIF1<0,SKIPIF1<0為蒙日?qǐng)A上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線,與蒙日?qǐng)A分別交于P,Q兩點(diǎn),若SKIPIF1<0面積的最大值為36,則橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用橢圓的離心率可得SKIPIF1<0,分析可知SKIPIF1<0為圓SKIPIF1<0的一條直徑,利用勾股定理得出SKIPIF1<0,再利用基本不等式即可求即解【詳解】因?yàn)闄E圓SKIPIF1<0的離心率SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以橢圓SKIPIF1<0的蒙日?qǐng)A的半徑為SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0為蒙日?qǐng)A的直徑,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0面積的最大值為:SKIPIF1<0.由SKIPIF1<0面積的最大值為36,得SKIPIF1<0,得SKIPIF1<0,進(jìn)而有SKIPIF1<0,SKIPIF1<0,故橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)為SKIPIF1<0.故選:B5.(2023·全國(guó)·高三專題練習(xí))加斯帕爾·蒙日(圖1)是18~19世紀(jì)法國(guó)著名的幾何學(xué)家,他在研究圓錐曲線時(shí)發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點(diǎn)都在同一個(gè)圓上,其圓心是橢圓的中心,這個(gè)圓被稱為“蒙日?qǐng)A”(圖2).則橢圓SKIPIF1<0的蒙日?qǐng)A的半徑為(

)A.3 B.4 C.5 D.6【答案】A【分析】由蒙日?qǐng)A的定義,確定出圓上的一點(diǎn)即可求出圓的半徑.【詳解】由蒙日?qǐng)A的定義,可知橢圓SKIPIF1<0的兩條切線SKIPIF1<0的交點(diǎn)在圓上,所以SKIPIF1<0,故選:A6.(2021秋·四川成都·高二樹(shù)德中學(xué)??茧A段練習(xí))若將一個(gè)橢圓繞其中心旋轉(zhuǎn)90°,所得橢圓短軸兩頂點(diǎn)恰好是旋轉(zhuǎn)前橢圓的兩焦點(diǎn),這樣的橢圓稱為“對(duì)偶橢圓”.下列橢圓中是“對(duì)偶橢圓”的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)給定定義可得橢圓的短半軸長(zhǎng)與半焦距相等,再對(duì)各選項(xiàng)逐一計(jì)算判斷作答.【詳解】由“對(duì)偶橢圓”定義得:短半軸長(zhǎng)b與半焦距c相等的橢圓是“對(duì)偶橢圓”,對(duì)于A,SKIPIF1<0,即SKIPIF1<0,A是“對(duì)偶橢圓”;對(duì)于B,SKIPIF1<0,即SKIPIF1<0,B不是“對(duì)偶橢圓”;對(duì)于C,SKIPIF1<0,即SKIPIF1<0,C不是“對(duì)偶橢圓”;對(duì)于D,SKIPIF1<0,即SKIPIF1<0,D不是“對(duì)偶橢圓”.故選:A7.(2021春·上海閔行·高二閔行中學(xué)??计谀┤羟€SKIPIF1<0上存在兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線的自公切線,下列方程的曲線有自公切線的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】通過(guò)圖象,觀察其圖象是否滿足在其圖象上存在兩個(gè)不同點(diǎn)處的切線重合,從而確定是否存在自公切線,進(jìn)而得到結(jié)論.【詳解】A:因?yàn)镾KIPIF1<0,即SKIPIF1<0是拋物線,沒(méi)有自公切線,故A錯(cuò)誤;B:因?yàn)镾KIPIF1<0,表示的是圖形中的實(shí)線部分,沒(méi)有自公切線,故B錯(cuò)誤;C:因?yàn)镾KIPIF1<0,表示的是圖形中的實(shí)線部分,由兩圓相交,可知公切線,故有自公切線,故C正確;D:因?yàn)镾KIPIF1<0,即SKIPIF1<0是雙勾函數(shù),沒(méi)有自公切線,故D錯(cuò)誤;故選:C.8.(2021·遼寧沈陽(yáng)·東北育才學(xué)校??寄M預(yù)測(cè))在平面直角坐標(biāo)系中,定義SKIPIF1<0稱為點(diǎn)SKIPIF1<0的“SKIPIF1<0和”,其中SKIPIF1<0為坐標(biāo)原點(diǎn),對(duì)于下列結(jié)論:(1)“SKIPIF1<0和”為1的點(diǎn)SKIPIF1<0的軌跡圍成的圖形面積為2;(2)設(shè)SKIPIF1<0是直線SKIPIF1<0上任意一點(diǎn),則點(diǎn)SKIPIF1<0的“SKIPIF1<0和”的最小值為2;(3)設(shè)SKIPIF1<0是直線SKIPIF1<0上任意一點(diǎn),則使得“SKIPIF1<0和”最小的點(diǎn)有無(wú)數(shù)個(gè)”的充要條件是SKIPIF1<0;(4)設(shè)SKIPIF1<0是橢圓SKIPIF1<0上任意一點(diǎn),則“SKIPIF1<0和”的最大值為SKIPIF1<0.其中正確的結(jié)論序號(hào)為(

)A.(1)(2)(3) B.(1)(2)(4)C.(1)(3)(4) D.(2)(3)(4)【答案】B【解析】根據(jù)新定義“SKIPIF1<0和”,通過(guò)數(shù)形結(jié)合判斷(1)正確,通過(guò)研究函數(shù)最值對(duì)選項(xiàng)(2)(3)(4)逐一判斷即可.【詳解】(1)當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0的軌跡如圖,其面積為2,正確;(2)SKIPIF1<0是直線SKIPIF1<0上的一點(diǎn),SKIPIF1<0,SKIPIF1<0SKIPIF1<0可知,SKIPIF1<0,SKIPIF1<0時(shí)遞減,SKIPIF1<0時(shí)遞增,故SKIPIF1<0的最小值在SKIPIF1<0時(shí)取得,SKIPIF1<0,正確;(3)同(2),SKIPIF1<0,可知當(dāng)SKIPIF1<0時(shí),都滿足,“SKIPIF1<0和”最小的點(diǎn)有無(wú)數(shù)個(gè),故錯(cuò)誤;(4)可設(shè)橢圓參數(shù)方程為SKIPIF1<0SKIPIF1<0,易知其最大值為SKIPIF1<0,正確.故選:B.【點(diǎn)睛】本題的解題關(guān)鍵是認(rèn)真讀題,理解新定義“SKIPIF1<0和”,再通過(guò)數(shù)形結(jié)合和函數(shù)最值的研究逐一判斷即突破難點(diǎn).9.(2022秋·四川成都·高二成都外國(guó)語(yǔ)學(xué)校??计谥校┤魴E圓或雙曲線上存在點(diǎn)SKIPIF1<0,使得點(diǎn)SKIPIF1<0到兩個(gè)焦點(diǎn)SKIPIF1<0的距離之比為SKIPIF1<0,且存在SKIPIF1<0,則稱此橢圓或雙曲線存在“SKIPIF1<0點(diǎn)”,下列曲線中存在“SKIPIF1<0點(diǎn)”的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】求出滿足條件SKIPIF1<0時(shí)的SKIPIF1<0和SKIPIF1<0,再求出SKIPIF1<0,驗(yàn)證SKIPIF1<0,SKIPIF1<0,SKIPIF1<0能否是三角形的三邊長(zhǎng),即可得.【詳解】SKIPIF1<0,則SKIPIF1<0,若是橢圓,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若是雙曲線,則SKIPIF1<0,SKIPIF1<0,A中橢圓,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,不存在SKIPIF1<0;B中橢圓,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,不存在SKIPIF1<0C中雙曲線,SKIPIF1<0,雙曲線上點(diǎn)到到右焦點(diǎn)距離的最小值是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,構(gòu)成SKIPIF1<0,存在“SKIPIF1<0點(diǎn)”,D中雙曲線,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,不存在SKIPIF1<0故選:C.【點(diǎn)睛】本題考查新定義“SKIPIF1<0點(diǎn)”,解題方法是弱化條件,求出滿足部分條件的SKIPIF1<0點(diǎn)具有的性質(zhì),驗(yàn)證是否滿足另外的條件:構(gòu)成三角形.從而完成求解.10.(2022秋·廣西欽州·高二校考階段練習(xí))已知橢圓SKIPIF1<0的焦點(diǎn)為SKIPIF1<0、SKIPIF1<0,若點(diǎn)SKIPIF1<0在橢圓上,且滿足SKIPIF1<0(其中SKIPIF1<0為坐標(biāo)原點(diǎn)),則稱點(diǎn)SKIPIF1<0為“★”點(diǎn).下列結(jié)論正確的是(

)A.橢圓SKIPIF1<0上的所有點(diǎn)都是“★”點(diǎn)B.橢圓SKIPIF1<0上僅有有限個(gè)點(diǎn)是“★”點(diǎn)C.橢圓SKIPIF1<0上的所有點(diǎn)都不是“★”點(diǎn)D.橢圓SKIPIF1<0上有無(wú)窮多個(gè)點(diǎn)(但不是所有的點(diǎn))是“★”點(diǎn)【答案】B【分析】設(shè)點(diǎn)SKIPIF1<0,由SKIPIF1<0得出關(guān)于SKIPIF1<0、SKIPIF1<0的等式,由SKIPIF1<0,求出方程的解,即可得出結(jié)論.【詳解】設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,此時(shí)SKIPIF1<0,所以,橢圓SKIPIF1<0上有且只有SKIPIF1<0個(gè)點(diǎn)是“★”點(diǎn).故選:B.【點(diǎn)睛】本題考查橢圓中的新定義,考查橢圓方程的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,屬于中等題.11.(2019秋·北京·高二北京市第十三中學(xué)??计谥校┮阎獌啥c(diǎn)SKIPIF1<0,SKIPIF1<0,若直線上存在點(diǎn)SKIPIF1<0,使SKIPIF1<0,則該直線為“SKIPIF1<0型直線”,給出下列直線,其中是“SKIPIF1<0型直線”的是(

)①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0A.①③ B.①② C.③④ D.①④【答案】D【分析】易得點(diǎn)SKIPIF1<0在以SKIPIF1<0、SKIPIF1<0為焦點(diǎn)的橢圓SKIPIF1<0上,“SKIPIF1<0型直線”和橢圓有公共點(diǎn),逐個(gè)選項(xiàng)聯(lián)立方程由判別式驗(yàn)證即可.【詳解】SKIPIF1<0兩定點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在以SKIPIF1<0、SKIPIF1<0為焦點(diǎn)的橢圓上,且SKIPIF1<0,故橢圓的方程為SKIPIF1<0,滿足題意的“SKIPIF1<0型直線”和橢圓有公共點(diǎn),聯(lián)立SKIPIF1<0和SKIPIF1<0,消SKIPIF1<0整理可得SKIPIF1<0,故SKIPIF1<0,即直線與橢圓有公共點(diǎn),即為“SKIPIF1<0型直線”,聯(lián)立SKIPIF1<0和SKIPIF1<0,顯然無(wú)交點(diǎn),故不是“SKIPIF1<0型直線”,聯(lián)立SKIPIF1<0和SKIPIF1<0,消SKIPIF1<0整理可得SKIPIF1<0,故SKIPIF1<0,故不是“SKIPIF1<0型直線”,聯(lián)立SKIPIF1<0和SKIPIF1<0消SKIPIF1<0整理可得SKIPIF1<0,故SKIPIF1<0,即直線與橢圓有公共點(diǎn),即為“SKIPIF1<0型直線”,故選:D【點(diǎn)睛】本題考查了橢圓的定義以及橢圓的標(biāo)準(zhǔn)方程,此題屬于圓錐曲線的新定義題目,同時(shí)考查了直線與橢圓位置關(guān)系的判斷,屬于中等題.12.(2017春·吉林·高一統(tǒng)考期末)已知平面上一點(diǎn)M(5,0),若直線上存在點(diǎn)P使|PM|≤4,則稱該直線為“切割型直線”,下列直線中是“切割型直線”的是(

)①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.A.①③ B.①② C.②③ D.③④【答案】C【分析】根據(jù)已知條件,利用點(diǎn)到直線的距離公式進(jìn)行計(jì)算.【詳解】對(duì)于①,點(diǎn)M到直線y=x+1的距離SKIPIF1<0,故不存在點(diǎn)P使|PM|≤4,故①不是;對(duì)于②,點(diǎn)M到直線y=2的距離d2=2<4,故存在點(diǎn)P使|PM|≤4,故②是;對(duì)于③,直線方程為4x-3y=0,點(diǎn)M到直線4x-3y=0的距離SKIPIF1<0,故存在點(diǎn)P使|PM|≤4,故③是;對(duì)于④,點(diǎn)M到直線y=2x+1的距離SKIPIF1<0,故不存在點(diǎn)P使|PM|≤4,故④不是.綜上可知符合條件的有②③.故A,B,D錯(cuò)誤.故選:C.二、多選題13.(2022秋·福建廈門·高三廈門雙十中學(xué)??茧A段練習(xí))2021年3月30日,小米正式開(kāi)始啟用具備“超橢圓”數(shù)學(xué)之美的新logo.設(shè)計(jì)師的靈感來(lái)源于曲線C:SKIPIF1<0.其中星形線E:SKIPIF1<0常用于超輕材料的設(shè)計(jì).則下列關(guān)于星形線說(shuō)法正確的是(

)A.E關(guān)于y軸對(duì)稱B.E上的點(diǎn)到x軸、y軸的距離之積不超過(guò)SKIPIF1<0C.E上的點(diǎn)到原點(diǎn)距離的最小值為SKIPIF1<0D.曲線E所圍成圖形的面積小于2【答案】ABD【分析】A由SKIPIF1<0、SKIPIF1<0均在曲線上即可判斷;B應(yīng)用基本不等式SKIPIF1<0即可判斷;C由SKIPIF1<0,結(jié)合立方和公式及B的結(jié)論即可判斷;D根據(jù)SKIPIF1<0與SKIPIF1<0圖形的位置關(guān)系判斷.【詳解】若SKIPIF1<0在星形線E上,則SKIPIF1<0也在E上,故E關(guān)于y軸對(duì)稱,A正確;由SKIPIF1<0,則SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,B正確;由SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,故E上的點(diǎn)到原點(diǎn)距離的最小值為SKIPIF1<0,C錯(cuò)誤;曲線E過(guò)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0所圍成的區(qū)域內(nèi)部,而SKIPIF1<0所圍成的面積為2,故曲線E所圍成圖形的面積小于2,D正確.故選:ABD【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:應(yīng)用基本不等式有SKIPIF1<0,由SKIPIF1<0及立方和公式求兩點(diǎn)距離,利用SKIPIF1<0與SKIPIF1<0圖形的位置判斷面積大小.14.(2022·全國(guó)·高三專題練習(xí))已知曲線C的方程為SKIPIF1<0,集合SKIPIF1<0,若對(duì)于任意的SKIPIF1<0,都存在SKIPIF1<0,使得SKIPIF1<0成立,則稱曲線C為Σ曲線.下列方程所表示的曲線中,是Σ曲線的有(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【分析】問(wèn)題轉(zhuǎn)化為SKIPIF1<0,存在SKIPIF1<0,使得SKIPIF1<0,根據(jù)這一條件逐一判斷即可.【詳解】A:SKIPIF1<0的圖象既關(guān)于x軸對(duì)稱,也關(guān)于y軸對(duì)稱,且圖象是封閉圖形.所以對(duì)于任意的點(diǎn)SKIPIF1<0,存在著點(diǎn)Q(x2,y2)使得SKIPIF1<0,所以滿足;B:SKIPIF1<0的圖象是雙曲線,且雙曲線的漸近線斜率為±1,所以漸近線將平面分為四個(gè)夾角為90°的區(qū)域,當(dāng)P,Q在雙曲線同一支上,此時(shí)SKIPIF1<0,當(dāng)P,Q不在雙曲線同一支上,此時(shí)SKIPIF1<0,所以SKIPIF1<0不滿足;C:SKIPIF1<0的圖象是焦點(diǎn)在x軸上的拋物線,且關(guān)于x軸對(duì)稱,設(shè)P為拋物線上一點(diǎn),過(guò)O點(diǎn)作OP的垂線,則垂線一定與拋物線交于Q點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0D:取P(0,1),若SKIPIF1<0,則有SKIPIF1<0顯然不成立,所以此時(shí)SKIPIF1<0不成立,故選:AC【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用圓錐曲線的性質(zhì)是解題的關(guān)鍵.15.(2021秋·河北保定·高二順平縣中學(xué)??茧A段練習(xí))在平面內(nèi),若曲線SKIPIF1<0上存在點(diǎn)SKIPIF1<0,使點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0,SKIPIF1<0的距離之和為10,則稱曲線SKIPIF1<0為“有用曲線”,以下曲線是“有用曲線”的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】利用有用曲線的定義逐項(xiàng)判斷即可.【詳解】解:設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0,SKIPIF1<0的距離之和為10,由橢圓的定義可得點(diǎn)SKIPIF1<0的軌跡方程為:SKIPIF1<0,對(duì)A,由SKIPIF1<0整理得SKIPIF1<0SKIPIF1<0因此曲線SKIPIF1<0上存在點(diǎn)SKIPIF1<0滿足條件,所以SKIPIF1<0是“有用曲線”,故A正確;對(duì)B,因?yàn)榍€SKIPIF1<0在曲線SKIPIF1<0的內(nèi)部,無(wú)交點(diǎn),所以SKIPIF1<0不是“有用曲線”,故B錯(cuò)誤;對(duì)C,曲線SKIPIF1<0與SKIPIF1<0有交點(diǎn)SKIPIF1<0與SKIPIF1<0,所以SKIPIF1<0是“有用曲線”,故C正確;對(duì)D,曲線SKIPIF1<0與SKIPIF1<0也有交點(diǎn),所以SKIPIF1<0是“有用曲線",故D正確.故選:ACD.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題利用所給曲線的定義進(jìn)行判斷,關(guān)鍵是由題意得出點(diǎn)SKIPIF1<0滿足的方程,所給選項(xiàng)中的曲線只要與點(diǎn)SKIPIF1<0滿足的方程有交點(diǎn)即符合題意.16.(2021秋·遼寧·高二遼寧實(shí)驗(yàn)中學(xué)校考期中)雙紐線也稱伯努利雙紐線,是指定線段SKIPIF1<0長(zhǎng)度為SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,那么SKIPIF1<0的軌跡稱為雙紐線.已知曲線SKIPIF1<0為雙紐線,下列選項(xiàng)判斷正確的是(

)A.曲線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0B.曲線SKIPIF1<0上的點(diǎn)的縱坐標(biāo)的取值范圍是SKIPIF1<0C.曲線SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱D.SKIPIF1<0為曲線SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0的坐標(biāo)為SKIPIF1<0和SKIPIF1<0,則SKIPIF1<0面積的最大值為SKIPIF1<0【答案】ABC【分析】將點(diǎn)SKIPIF1<0代入曲線SKIPIF1<0方程可知A正確;利用SKIPIF1<0、SKIPIF1<0可求得SKIPIF1<0,進(jìn)而求得SKIPIF1<0的范圍,知B正確;設(shè)曲線SKIPIF1<0上的點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸的對(duì)稱點(diǎn)SKIPIF1<0代入曲線SKIPIF1<0方程可知C正確;由SKIPIF1<0知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0面積最大,驗(yàn)證可知曲線SKIPIF1<0上存在點(diǎn)SKIPIF1<0使得SKIPIF1<0,可知SKIPIF1<0,D錯(cuò)誤.【詳解】對(duì)于A,將SKIPIF1<0代入曲線SKIPIF1<0方程,知方程成立,SKIPIF1<0曲線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,A正確;對(duì)于B,SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),即SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,即曲線SKIPIF1<0上的點(diǎn)的縱坐標(biāo)的取值范圍是SKIPIF1<0,B正確;對(duì)于C,設(shè)曲線SKIPIF1<0上任一點(diǎn)為SKIPIF1<0,則其關(guān)于SKIPIF1<0軸對(duì)稱的點(diǎn)為SKIPIF1<0,SKIPIF1<0,即點(diǎn)SKIPIF1<0也在曲線SKIPIF1<0上,SKIPIF1<0曲線SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱,C正確;對(duì)于D,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0為曲線SKIPIF1<0上的點(diǎn),SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,即曲線SKIPIF1<0上存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,SKIPIF1<0,D錯(cuò)誤.故選:ABC.17.(2021秋·江蘇南通·高二江蘇省包場(chǎng)高級(jí)中學(xué)??计谥校S金分割比例SKIPIF1<0具有嚴(yán)格的比例性、藝術(shù)性,和諧性,蘊(yùn)含著豐富的美學(xué)價(jià)值.這一比值能夠引起人們的美感,是建筑和藝術(shù)中最理想的比例.我們把離心率SKIPIF1<0的橢圓稱為“黃金橢圓”,則以下說(shuō)法正確的是(

)A.橢圓SKIPIF1<0是“黃金橢圓”B.若橢圓SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,且滿足SKIPIF1<0,則該橢圓為“黃金橢圓”C.設(shè)橢圓SKIPIF1<0的左焦點(diǎn)為F,上頂點(diǎn)為B,右頂點(diǎn)為A,若SKIPIF1<0,則該橢圓為“黃金橢圓”D.設(shè)橢圓SKIPIF1<0的左、右頂點(diǎn)分別是A,B,左、右焦點(diǎn)分別是SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則該橢圓為“黃金橢圓”【答案】ABC【分析】定義離心率SKIPIF1<0的橢圓稱為“黃金橢圓”,根據(jù)各命題中的橢圓方程,由題設(shè)及SKIPIF1<0、SKIPIF1<0列方程求橢圓離心率即可確定是否為“黃金橢圓”【詳解】對(duì)于A:由題意得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,故橢圓SKIPIF1<0是“黃金橢圓”,故A正確;對(duì)于B:SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),故該橢圓是“黃金橢圓”,故B正確;對(duì)于C:由SKIPIF1<0得SKIPIF1<0,化簡(jiǎn)可知SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),故該橢圓是“黃金橢圓”,故C正確;對(duì)于D:由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0(負(fù)值舍去),故該橢圓不是“黃金橢圓”,故D錯(cuò)誤.故選:ABC三、填空題18.(2023春·北京·高三北京市陳經(jīng)綸中學(xué)??奸_(kāi)學(xué)考試)卵圓是常見(jiàn)的一類曲線,已知一個(gè)卵圓SKIPIF1<0的方程為:SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0為卵圓上任意一點(diǎn),則下列說(shuō)法中正確的是________.①卵圓SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱②卵圓上不存在兩點(diǎn)關(guān)于直線SKIPIF1<0對(duì)稱③線段SKIPIF1<0長(zhǎng)度的取值范圍是SKIPIF1<0④SKIPIF1<0的面積最大值為SKIPIF1<0【答案】①③④【分析】利用點(diǎn)SKIPIF1<0和SKIPIF1<0均滿足方程,即可判斷①;設(shè)SKIPIF1<0和SKIPIF1<0都在卵圓SKIPIF1<0上,再解SKIPIF1<0即可判斷②;利用兩點(diǎn)間的距離公式表示SKIPIF1<0,然后利用導(dǎo)數(shù)研究其最值,即可判斷③;利用三角形的面積公式表示出SKIPIF1<0,然后利用導(dǎo)數(shù)研究其最值,即可判斷④.【詳解】對(duì)于①,設(shè)SKIPIF1<0是卵圓SKIPIF1<0上的任意一個(gè)點(diǎn),因?yàn)镾KIPIF1<0,所以點(diǎn)SKIPIF1<0也在卵圓SKIPIF1<0上,又點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱,所以卵圓SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱,故①正確;對(duì)于②,設(shè)SKIPIF1<0在卵圓SKIPIF1<0上,SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱的點(diǎn)SKIPIF1<0也在卵圓SKIPIF1<0上,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以卵圓上存在SKIPIF1<0兩點(diǎn)關(guān)于直線SKIPIF1<0對(duì)稱,故②錯(cuò)誤;對(duì)于③,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞減,又SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故③正確;對(duì)于④,點(diǎn)SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,所以SKIPIF1<0,此時(shí)SKIPIF1<0的面積取得最大值SKIPIF1<0,故④正確.故答案為:①③④.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查了圓錐曲線的新定義問(wèn)題,解決此類問(wèn)題的關(guān)鍵在于理解新定義的本質(zhì),把新情境下的概念、法則、運(yùn)算化歸到常規(guī)的數(shù)學(xué)背景中,運(yùn)用相關(guān)的數(shù)學(xué)公式、定理、性質(zhì)進(jìn)行解答.19.(2023·高二課時(shí)練習(xí))在平面直角坐標(biāo)系中,SKIPIF1<0,SKIPIF1<0,若在曲線C上存在一點(diǎn)P,使得∠APB為鈍角,則稱曲線上存在“鈍點(diǎn)”,下列曲線中,有“鈍點(diǎn)”的曲線為_(kāi)_____.(填序號(hào))①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0;⑤SKIPIF1<0.【答案】①④⑤【分析】根據(jù)曲線上存在“鈍點(diǎn)”的定義,依次判斷各曲線是否存在“鈍點(diǎn)”即可.【詳解】設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,若∠APB為鈍角,則SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0不共線,所以SKIPIF1<0,且SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0,反之若SKIPIF1<0,則∠APB為鈍角,對(duì)于曲線SKIPIF1<0,取曲線上的點(diǎn)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為鈍角,故曲線SKIPIF1<0為有“鈍點(diǎn)”的曲線;對(duì)于曲線SKIPIF1<0,若曲線上的點(diǎn)SKIPIF1<0為“鈍點(diǎn)”,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,矛盾所以曲線SKIPIF1<0不是有“鈍點(diǎn)”的曲線;對(duì)于曲線SKIPIF1<0,若曲線上點(diǎn)SKIPIF1<0為“鈍點(diǎn)”,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,矛盾所以曲線SKIPIF1<0不是有“鈍點(diǎn)”的曲線;對(duì)于曲線SKIPIF1<0,取曲線上的點(diǎn)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為鈍角,故曲線SKIPIF1<0為有“鈍點(diǎn)”的曲線;對(duì)于曲線SKIPIF1<0,取曲線上的點(diǎn)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為鈍角,故曲線SKIPIF1<0為有“鈍點(diǎn)”的曲線.所以曲線①④⑤為有“鈍點(diǎn)”的曲線.故答案為:①④⑤.20.(2023秋·廣東茂名·高二統(tǒng)考期末)法國(guó)數(shù)學(xué)家蒙日SKIPIF1<0發(fā)現(xiàn):雙曲線SKIPIF1<0的兩條互相垂直切線的交點(diǎn)SKIPIF1<0的軌跡方程為:SKIPIF1<0,這個(gè)圓被稱為蒙日?qǐng)A.若某雙曲線SKIPIF1<0對(duì)應(yīng)的蒙日?qǐng)A方程為SKIPIF1<0,則SKIPIF1<0___________.【答案】2【分析】根據(jù)題意寫出雙曲線SKIPIF1<0對(duì)應(yīng)的蒙日?qǐng)A方程,可得出關(guān)于SKIPIF1<0的等式,即可求得正數(shù)SKIPIF1<0的值.【詳解】由雙曲線SKIPIF1<0的方程可得SKIPIF1<0,由蒙日?qǐng)A的定義可得雙曲線SKIPIF1<0對(duì)應(yīng)的蒙日?qǐng)A方程SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0.故答案為:2.21.(2023·全國(guó)·高三專題練習(xí))一條拋物線把平面劃分為二個(gè)區(qū)域,如果一個(gè)平面圖形完全落在拋物線含有焦點(diǎn)的區(qū)域內(nèi),我們就稱此平面圖形被該拋物線覆蓋.那么下列命題中,正確的是___________.(填寫序號(hào))(1)任意一個(gè)多邊形所圍區(qū)域總能被某一條拋物線覆蓋;(2)與拋物線對(duì)稱軸不平行?不共線的射線不能被該拋物線覆蓋;(3)射線繞其端點(diǎn)轉(zhuǎn)動(dòng)一個(gè)銳角所掃過(guò)的角形區(qū)域可以被某二條拋物線覆蓋;(4)任意有限多條拋物線都不能覆蓋整個(gè)平面.【答案】(1)(2)(4)【分析】由平面圖形被該拋物線覆蓋的定義逐項(xiàng)分析判斷即可【詳解】解:由拋物線的圖像和性質(zhì)可知,由于任意一個(gè)多邊形所圍區(qū)域沿著拋物線頂點(diǎn)出發(fā)向拋物線對(duì)稱軸所在直線平移,總能把有限的區(qū)域放入拋物線內(nèi)部,所以(1)正確;由于過(guò)拋物線內(nèi)部一點(diǎn)的直線(不平行于軸)與拋物線都有兩個(gè)交點(diǎn),故拋物線無(wú)法覆蓋一條直線,也不能覆蓋與軸不平行、不共線的射線,所以(2)正確;由于銳角是由兩條不平行的射線組成,故拋物線不能覆蓋任何一個(gè)銳角,所以(3)錯(cuò)誤;取一條直線,使它不平行于任一拋物線的對(duì)稱軸,根據(jù)拋物線的圖像和性質(zhì)可知直線上的點(diǎn)不能被完全覆蓋,如圖,因?yàn)橐粭l直線若被拋物線覆蓋,它必須是拋物線的對(duì)稱軸,所以任意有限多條拋物線都不能覆蓋整個(gè)平面,所以(4)正確故答案為:(1)(2)(4)【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查新定義,考查拋物線的性質(zhì)的應(yīng)用,解題的關(guān)鍵是對(duì)新定義的正確理解,屬于中檔題22.(2023·全國(guó)·高三專題練習(xí))定義:點(diǎn)SKIPIF1<0為曲線SKIPIF1<0外的一點(diǎn),SKIPIF1<0為SKIPIF1<0上的兩個(gè)動(dòng)點(diǎn),則SKIPIF1<0取最大值時(shí),SKIPIF1<0叫點(diǎn)SKIPIF1<0對(duì)曲線SKIPIF1<0的張角.已知點(diǎn)SKIPIF1<0為拋物線SKIPIF1<0上的動(dòng)點(diǎn),設(shè)SKIPIF1<0對(duì)圓SKIPIF1<0的張角為SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)__________.【答案】SKIPIF1<0【分析】先根據(jù)新定義,利用二倍角公式判斷SKIPIF1<0最小時(shí)SKIPIF1<0最小,再設(shè)SKIPIF1<0,利用距離公式,結(jié)合二次函數(shù)最值的求法求得SKIPIF1<0最小值,即得結(jié)果.【詳解】解:如圖,SKIPIF1<0,要使SKIPIF1<0最小,則SKIPIF1<0最大,即需SKIPIF1<0最小.設(shè)SKIPIF1<0,則SKIPIF1<0,∴當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0或SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的解題關(guān)鍵在于理解新定義,將SKIPIF1<0的最小值問(wèn)題轉(zhuǎn)化為線段SKIPIF1<0最小問(wèn)題,結(jié)合二次函數(shù)求最值即突破難點(diǎn).23.(2022·全國(guó)·高二專題練習(xí))在平面直角坐標(biāo)系xOy中,點(diǎn)M不與原點(diǎn)О重合,稱射線OM與SKIPIF1<0的交點(diǎn)N為點(diǎn)M的“中心投影點(diǎn)”,曲線SKIPIF1<0上所有點(diǎn)的“中心投影點(diǎn)”構(gòu)成的曲線長(zhǎng)度是_______【答案】SKIPIF1<0【解析】可作出對(duì)應(yīng)曲線的圖象,結(jié)合圖形,求出題中“中心投影點(diǎn)”構(gòu)成的曲線長(zhǎng)度對(duì)應(yīng)圓中的圓心角,從而求出其“中心投影點(diǎn)”構(gòu)成的曲線的長(zhǎng)度.【詳解】曲線SKIPIF1<0的漸近線方程為:SKIPIF1<0,設(shè)漸近線與圓SKIPIF1<0的交點(diǎn)分別為SKIPIF1<0,如下圖則曲線SKIPIF1<0上所有點(diǎn)的“中心投影點(diǎn)”構(gòu)成的曲線為圓弧SKIPIF1<0由題意SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,則SKIPIF1<0故答案為:SKIPIF1<024.(2020·浙江·高二期末)把橢圓SKIPIF1<0的短軸和焦點(diǎn)連線段中較長(zhǎng)者?較短者分別作為橢圓SKIPIF1<0的長(zhǎng)軸?短軸,使橢圓SKIPIF1<0變換成橢圓SKIPIF1<0,稱之為橢圓的一次“壓縮”.按上述定義把橢圓SKIPIF1<0“壓縮”成橢圓SKIPIF1<0,得到一系列橢圓SKIPIF1<0,…當(dāng)短軸長(zhǎng)與焦距相等時(shí)終止“壓縮”.經(jīng)研究發(fā)現(xiàn),某個(gè)橢圓SKIPIF1<0經(jīng)過(guò)SKIPIF1<0次“壓縮”后能終止,則橢圓SKIPIF1<0的離心率可能是①SKIPIF1<0,②SKIPIF1<0,③SKIPIF1<0,④SKIPIF1<0中的______.(填寫所有正確結(jié)論的序號(hào))【答案】①②【解析】分類討論,確定壓縮數(shù)為SKIPIF1<0時(shí),半長(zhǎng)軸、半短軸、半焦距,利用離心率公式,即可求得結(jié)論.【詳解】解:依題意,若原橢圓,短軸>焦距,則壓縮數(shù)為SKIPIF1<0時(shí),半長(zhǎng)軸為SKIPIF1<0,半短軸為SKIPIF1<0,半焦距為SKIPIF1<0所以壓縮數(shù)為SKIPIF1<0時(shí),半長(zhǎng)軸為SKIPIF1<0,半短軸為SKIPIF1<0,半焦距為SKIPIF1<0;壓縮數(shù)為SKIPIF1<0時(shí),半長(zhǎng)軸為SKIPIF1<0,半短軸為SKIPIF1<0,半焦距為SKIPIF1<0∵壓縮數(shù)為SKIPIF1<0時(shí),SKIPIF1<0∴SKIPIF1<0的離心率SKIPIF1<0同理,若原橢圓,短軸<焦距,則壓縮數(shù)為SKIPIF1<0時(shí),半長(zhǎng)軸為SKIPIF1<0,半短軸為SKIPIF1<0,半焦距為SKIPIF1<0所以壓縮數(shù)為SKIPIF1<0時(shí),半長(zhǎng)軸為SKIPIF1<0,半短軸為SKIPIF1<0,半焦距為SKIPIF1<0;壓縮數(shù)為SKIPIF1<0時(shí),半長(zhǎng)軸為SKIPIF1<0,半短軸為SKIPIF1<0,半焦距為SKIPIF1<0,∵壓縮數(shù)為SKIPIF1<0時(shí),SKIPIF1<0∴SKIPIF1<0的離心率SKIPIF1<0.故答案為:①②.【點(diǎn)睛】本題考查新定義,考查學(xué)生的計(jì)算能力,考查分類討論的數(shù)學(xué)思想,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.25.(2018·北京·高二統(tǒng)考期末)已知兩定點(diǎn)SKIPIF1<0,若直線上存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,則該直線為“SKIPIF1<0型直線”.給出下列直線,其中是“SKIPIF1<0型直線”的是___________.①SKIPIF1<0

②SKIPIF1<0

③SKIPIF1<0

④SKIPIF1<0【答案】①③【分析】根據(jù)橢圓的定義將“SKIPIF1<0型直線”的判定問(wèn)題轉(zhuǎn)化為直線與橢圓是否有公共點(diǎn)的問(wèn)題.【詳解】由橢圓的定義可知,點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為焦點(diǎn)的橢圓,其方程為SKIPIF1<0,對(duì)于①中,直線SKIPIF1<0代入橢圓的方程SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0是“SKIPIF1<0型直線”;對(duì)于②中,把SKIPIF1<0代入SKIPIF1<0,則SKIPIF1<0,此時(shí)無(wú)解,所以SKIPIF1<0不是“SKIPIF1<0型直線”;對(duì)于③中,把直線SKIPIF1<0代入橢圓的方程SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0是“SKIPIF1<0型直線”;對(duì)于④中,把直線SKIPIF1<0代入橢圓的方程SKIPIF1<0,整理得SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0不是“SKIPIF1<0型直線”,故答案為:①③.26.(2017·河南漯河·漯河高中??既#┢矫嬷苯亲鴺?biāo)系中,SKIPIF1<0,SKIPIF1<0,若曲線SKIPIF1<0上存在一點(diǎn)SKIPIF1<0,使SKIPIF1<0,則稱曲線SKIPIF1<0為“合作曲線”,有下列曲線①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0;⑤SKIPIF1<0,其中“合作曲線”是__________.(填寫所有滿足條件的序號(hào))【答案】①③④【分析】設(shè)點(diǎn)SKIPIF1<0,曲線SKIPIF1<0為“合作曲線”SKIPIF1<0存在點(diǎn)SKIPIF1<0使得SKIPIF1<0.解出即可判斷出結(jié)論.【詳解】解:設(shè)點(diǎn)SKIPIF1<0,曲線SKIPIF1<0上存在一點(diǎn)SKIPIF1<0,使SK

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論