![專題13 統(tǒng)計與概率-【好題匯編】五年(2020-2024)高考數(shù)學(xué)真題分類匯編(含答案解析)_第1頁](http://file4.renrendoc.com/view8/M00/02/00/wKhkGWcD8oCAd_zWAAHUY_USgBo376.jpg)
![專題13 統(tǒng)計與概率-【好題匯編】五年(2020-2024)高考數(shù)學(xué)真題分類匯編(含答案解析)_第2頁](http://file4.renrendoc.com/view8/M00/02/00/wKhkGWcD8oCAd_zWAAHUY_USgBo3762.jpg)
![專題13 統(tǒng)計與概率-【好題匯編】五年(2020-2024)高考數(shù)學(xué)真題分類匯編(含答案解析)_第3頁](http://file4.renrendoc.com/view8/M00/02/00/wKhkGWcD8oCAd_zWAAHUY_USgBo3763.jpg)
![專題13 統(tǒng)計與概率-【好題匯編】五年(2020-2024)高考數(shù)學(xué)真題分類匯編(含答案解析)_第4頁](http://file4.renrendoc.com/view8/M00/02/00/wKhkGWcD8oCAd_zWAAHUY_USgBo3764.jpg)
![專題13 統(tǒng)計與概率-【好題匯編】五年(2020-2024)高考數(shù)學(xué)真題分類匯編(含答案解析)_第5頁](http://file4.renrendoc.com/view8/M00/02/00/wKhkGWcD8oCAd_zWAAHUY_USgBo3765.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題13統(tǒng)計與概率考點五年考情(2020-2024)命題趨勢考點01統(tǒng)計案例與數(shù)據(jù)分析2024全國ⅠⅡ2023全國Ⅰ乙卷2022乙卷甲卷2021乙卷全國ⅠⅡ統(tǒng)計案例以及數(shù)字特征類的運算子近年的考查頻率非常高,容易與實際情景以及頻率分布直方圖相結(jié)合,從而考查統(tǒng)計與概率的相關(guān)知識點,將是高考的一個方向??键c02古典概型與排列組合2024Ⅰ甲卷2023Ⅰ卷Ⅱ卷乙甲卷2022乙甲Ⅰ卷2021乙卷古典概型是高考數(shù)學(xué)中的一個重要考查點,難度小。排列組合在近年的高考中考查的不是很多,一般是排隊性問題,插空類,以及分類討論性問題考點03正態(tài)分布、離散型分布及應(yīng)用2024Ⅰ卷Ⅱ卷甲2023Ⅰ卷Ⅱ卷乙甲卷2022乙Ⅰ卷Ⅱ卷2021Ⅰ卷Ⅱ卷2020Ⅰ卷離散型分布是高考的一個常考題型,主要是賽制類問題,二項分布,超幾何分布類問題考點04事件的獨立,條件概率與全概率公式應(yīng)用,獨立性檢驗2024Ⅰ卷2023甲卷Ⅰ卷Ⅱ卷2022乙卷Ⅰ卷2021甲卷Ⅰ卷2020Ⅰ卷條件概率與全概率的應(yīng)用是高考在概率方面的一個重要方向,在新高考中將是一個非常重要的方向考點05概率綜合應(yīng)用2024Ⅰ卷2023Ⅱ卷乙卷2021Ⅱ卷2020Ⅰ卷隨著新一輪的高考數(shù)學(xué)改革,概率與其他知識相結(jié)合成為一個重要的考查方向,概率與數(shù)列,概率與函數(shù)倒數(shù)結(jié)合將成為熱點。考點01統(tǒng)計案例與數(shù)據(jù)分析一、單選題1.(2024·全國·高考真題)某農(nóng)業(yè)研究部門在面積相等的100塊稻田上種植一種新型水稻,得到各塊稻田的畝產(chǎn)量(單位:kg)并整理如下表畝產(chǎn)量[900,950)[950,1000)[1000,1050)[1050,1100)[1100,1150)[1150,1200)頻數(shù)61218302410根據(jù)表中數(shù)據(jù),下列結(jié)論中正確的是(
)A.100塊稻田畝產(chǎn)量的中位數(shù)小于1050kgB.100塊稻田中畝產(chǎn)量低于1100kg的稻田所占比例超過80%C.100塊稻田畝產(chǎn)量的極差介于200kg至300kg之間D.100塊稻田畝產(chǎn)量的平均值介于900kg至1000kg之間【答案】C【分析】計算出前三段頻數(shù)即可判斷A;計算出低于1100kg的頻數(shù),再計算比例即可判斷B;根據(jù)極差計算方法即可判斷C;根據(jù)平均值計算公式即可判斷D.【詳解】對于A,根據(jù)頻數(shù)分布表可知,,所以畝產(chǎn)量的中位數(shù)不小于,故A錯誤;對于B,畝產(chǎn)量不低于的頻數(shù)為,所以低于的稻田占比為,故B錯誤;對于C,稻田畝產(chǎn)量的極差最大為,最小為,故C正確;對于D,由頻數(shù)分布表可得,平均值為,故D錯誤.故選;C.2.(2022·全國·高考真題)某社區(qū)通過公益講座以普及社區(qū)居民的垃圾分類知識.為了解講座效果,隨機抽取10位社區(qū)居民,讓他們在講座前和講座后各回答一份垃圾分類知識問卷,這10位社區(qū)居民在講座前和講座后問卷答題的正確率如下圖:則(
)A.講座前問卷答題的正確率的中位數(shù)小于B.講座后問卷答題的正確率的平均數(shù)大于C.講座前問卷答題的正確率的標(biāo)準(zhǔn)差小于講座后正確率的標(biāo)準(zhǔn)差D.講座后問卷答題的正確率的極差大于講座前正確率的極差【答案】B【分析】由圖表信息,結(jié)合中位數(shù)、平均數(shù)、標(biāo)準(zhǔn)差、極差的概念,逐項判斷即可得解.【詳解】講座前中位數(shù)為,所以錯;講座后問卷答題的正確率只有一個是個,剩下全部大于等于,所以講座后問卷答題的正確率的平均數(shù)大于,所以B對;講座前問卷答題的正確率更加分散,所以講座前問卷答題的正確率的標(biāo)準(zhǔn)差大于講座后正確率的標(biāo)準(zhǔn)差,所以C錯;講座后問卷答題的正確率的極差為,講座前問卷答題的正確率的極差為,所以錯.故選:B.3.(2021·全國·高考真題)為了解某地農(nóng)村經(jīng)濟情況,對該地農(nóng)戶家庭年收入進行抽樣調(diào)查,將農(nóng)戶家庭年收入的調(diào)查數(shù)據(jù)整理得到如下頻率分布直方圖:根據(jù)此頻率分布直方圖,下面結(jié)論中不正確的是(
)A.該地農(nóng)戶家庭年收入低于4.5萬元的農(nóng)戶比率估計為6%B.該地農(nóng)戶家庭年收入不低于10.5萬元的農(nóng)戶比率估計為10%C.估計該地農(nóng)戶家庭年收入的平均值不超過6.5萬元D.估計該地有一半以上的農(nóng)戶,其家庭年收入介于4.5萬元至8.5萬元之間【答案】C【分析】根據(jù)直方圖的意義直接計算相應(yīng)范圍內(nèi)的頻率,即可判定ABD,以各組的中間值作為代表乘以相應(yīng)的頻率,然后求和即得到樣本的平均數(shù)的估計值,也就是總體平均值的估計值,計算后即可判定C.【詳解】因為頻率直方圖中的組距為1,所以各組的直方圖的高度等于頻率.樣本頻率直方圖中的頻率即可作為總體的相應(yīng)比率的估計值.該地農(nóng)戶家庭年收入低于4.5萬元的農(nóng)戶的比率估計值為,故A正確;該地農(nóng)戶家庭年收入不低于10.5萬元的農(nóng)戶比率估計值為,故B正確;該地農(nóng)戶家庭年收入介于4.5萬元至8.5萬元之間的比例估計值為,故D正確;該地農(nóng)戶家庭年收入的平均值的估計值為(萬元),超過6.5萬元,故C錯誤.綜上,給出結(jié)論中不正確的是C.故選:C.二、多選題4.(2023·全國·高考真題)有一組樣本數(shù)據(jù),其中是最小值,是最大值,則(
)A.的平均數(shù)等于的平均數(shù)B.的中位數(shù)等于的中位數(shù)C.的標(biāo)準(zhǔn)差不小于的標(biāo)準(zhǔn)差D.的極差不大于的極差【答案】BD【分析】根據(jù)題意結(jié)合平均數(shù)、中位數(shù)、標(biāo)準(zhǔn)差以及極差的概念逐項分析判斷.【詳解】對于選項A:設(shè)的平均數(shù)為,的平均數(shù)為,則,因為沒有確定的大小關(guān)系,所以無法判斷的大小,例如:,可得;例如,可得;例如,可得;故A錯誤;對于選項B:不妨設(shè),可知的中位數(shù)等于的中位數(shù)均為,故B正確;對于選項C:因為是最小值,是最大值,則的波動性不大于的波動性,即的標(biāo)準(zhǔn)差不大于的標(biāo)準(zhǔn)差,例如:,則平均數(shù),標(biāo)準(zhǔn)差,,則平均數(shù),標(biāo)準(zhǔn)差,顯然,即;故C錯誤;對于選項D:不妨設(shè),則,當(dāng)且僅當(dāng)時,等號成立,故D正確;故選:BD.5.(2021·全國·高考真題)有一組樣本數(shù)據(jù),,…,,由這組數(shù)據(jù)得到新樣本數(shù)據(jù),,…,,其中(為非零常數(shù),則(
)A.兩組樣本數(shù)據(jù)的樣本平均數(shù)相同B.兩組樣本數(shù)據(jù)的樣本中位數(shù)相同C.兩組樣本數(shù)據(jù)的樣本標(biāo)準(zhǔn)差相同D.兩組樣本數(shù)據(jù)的樣本極差相同【答案】CD【分析】A、C利用兩組數(shù)據(jù)的線性關(guān)系有、,即可判斷正誤;根據(jù)中位數(shù)、極差的定義,結(jié)合已知線性關(guān)系可判斷B、D的正誤.【詳解】A:且,故平均數(shù)不相同,錯誤;B:若第一組中位數(shù)為,則第二組的中位數(shù)為,顯然不相同,錯誤;C:,故方差相同,正確;D:由極差的定義知:若第一組的極差為,則第二組的極差為,故極差相同,正確;故選:CD6.(2021·全國·高考真題)下列統(tǒng)計量中,能度量樣本的離散程度的是(
)A.樣本的標(biāo)準(zhǔn)差 B.樣本的中位數(shù)C.樣本的極差 D.樣本的平均數(shù)【答案】AC【分析】考查所給的選項哪些是考查數(shù)據(jù)的離散程度,哪些是考查數(shù)據(jù)的集中趨勢即可確定正確選項.【詳解】由標(biāo)準(zhǔn)差的定義可知,標(biāo)準(zhǔn)差考查的是數(shù)據(jù)的離散程度;由中位數(shù)的定義可知,中位數(shù)考查的是數(shù)據(jù)的集中趨勢;由極差的定義可知,極差考查的是數(shù)據(jù)的離散程度;由平均數(shù)的定義可知,平均數(shù)考查的是數(shù)據(jù)的集中趨勢;故選:AC.三、解答題7.(2023·全國·高考真題)某研究小組經(jīng)過研究發(fā)現(xiàn)某種疾病的患病者與未患病者的某項醫(yī)學(xué)指標(biāo)有明顯差異,經(jīng)過大量調(diào)查,得到如下的患病者和未患病者該指標(biāo)的頻率分布直方圖:
利用該指標(biāo)制定一個檢測標(biāo)準(zhǔn),需要確定臨界值c,將該指標(biāo)大于c的人判定為陽性,小于或等于c的人判定為陰性.此檢測標(biāo)準(zhǔn)的漏診率是將患病者判定為陰性的概率,記為;誤診率是將未患病者判定為陽性的概率,記為.假設(shè)數(shù)據(jù)在組內(nèi)均勻分布,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.(1)當(dāng)漏診率%時,求臨界值c和誤診率;(2)設(shè)函數(shù),當(dāng)時,求的解析式,并求在區(qū)間的最小值.【答案】(1),;(2),最小值為.【分析】(1)根據(jù)題意由第一個圖可先求出,再根據(jù)第二個圖求出的矩形面積即可解出;(2)根據(jù)題意確定分段點,即可得出的解析式,再根據(jù)分段函數(shù)的最值求法即可解出.【詳解】(1)依題可知,左邊圖形第一個小矩形的面積為,所以,所以,解得:,.(2)當(dāng)時,;當(dāng)時,,故,所以在區(qū)間的最小值為.8.(2023·全國·高考真題)某廠為比較甲乙兩種工藝對橡膠產(chǎn)品伸縮率的處理效應(yīng),進行10次配對試驗,每次配對試驗選用材質(zhì)相同的兩個橡膠產(chǎn)品,隨機地選其中一個用甲工藝處理,另一個用乙工藝處理,測量處理后的橡膠產(chǎn)品的伸縮率.甲、乙兩種工藝處理后的橡膠產(chǎn)品的伸縮率分別記為,.試驗結(jié)果如下:試驗序號12345678910伸縮率545533551522575544541568596548伸縮率536527543530560533522550576536記,記的樣本平均數(shù)為,樣本方差為.(1)求,;(2)判斷甲工藝處理后的橡膠產(chǎn)品的伸縮率較乙工藝處理后的橡膠產(chǎn)品的伸縮率是否有顯著提高(如果,則認為甲工藝處理后的橡膠產(chǎn)品的伸縮率較乙工藝處理后的橡膠產(chǎn)品的伸縮率有顯著提高,否則不認為有顯著提高)【答案】(1),;(2)認為甲工藝處理后的橡膠產(chǎn)品的伸縮率較乙工藝處理后的橡膠產(chǎn)品的伸縮率有顯著提高.【分析】(1)直接利用平均數(shù)公式即可計算出,再得到所有的值,最后計算出方差即可;(2)根據(jù)公式計算出的值,和比較大小即可.【詳解】(1),,,的值分別為:,故(2)由(1)知:,,故有,所以認為甲工藝處理后的橡膠產(chǎn)品的伸縮率較乙工藝處理后的橡膠產(chǎn)品的伸縮率有顯著提高.9.(2022·全國·高考真題)某地經(jīng)過多年的環(huán)境治理,已將荒山改造成了綠水青山.為估計一林區(qū)某種樹木的總材積量,隨機選取了10棵這種樹木,測量每棵樹的根部橫截面積(單位:)和材積量(單位:),得到如下數(shù)據(jù):樣本號i12345678910總和根部橫截面積0.040.060.040.080.080.050.050.070.070.060.6材積量0.250.400.220.540.510.340.360.460.420.403.9并計算得.(1)估計該林區(qū)這種樹木平均一棵的根部橫截面積與平均一棵的材積量;(2)求該林區(qū)這種樹木的根部橫截面積與材積量的樣本相關(guān)系數(shù)(精確到0.01);(3)現(xiàn)測量了該林區(qū)所有這種樹木的根部橫截面積,并得到所有這種樹木的根部橫截面積總和為.已知樹木的材積量與其根部橫截面積近似成正比.利用以上數(shù)據(jù)給出該林區(qū)這種樹木的總材積量的估計值.附:相關(guān)系數(shù).【答案】(1);(2)(3)【詳解】(1)樣本中10棵這種樹木的根部橫截面積的平均值樣本中10棵這種樹木的材積量的平均值據(jù)此可估計該林區(qū)這種樹木平均一棵的根部橫截面積為,平均一棵的材積量為(2)則(3)設(shè)該林區(qū)這種樹木的總材積量的估計值為,又已知樹木的材積量與其根部橫截面積近似成正比,可得,解之得.則該林區(qū)這種樹木的總材積量估計為10.(2022·全國·高考真題)在某地區(qū)進行流行病學(xué)調(diào)查,隨機調(diào)查了100位某種疾病患者的年齡,得到如下的樣本數(shù)據(jù)的頻率分布直方圖:
(1)估計該地區(qū)這種疾病患者的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);(2)估計該地區(qū)一位這種疾病患者的年齡位于區(qū)間的概率;(3)已知該地區(qū)這種疾病的患病率為,該地區(qū)年齡位于區(qū)間的人口占該地區(qū)總?cè)丝诘?從該地區(qū)中任選一人,若此人的年齡位于區(qū)間,求此人患這種疾病的概率.(以樣本數(shù)據(jù)中患者的年齡位于各區(qū)間的頻率作為患者的年齡位于該區(qū)間的概率,精確到0.0001).【答案】(1)歲;(2);(3).【分析】(1)根據(jù)平均值等于各矩形的面積乘以對應(yīng)區(qū)間的中點值的和即可求出;(2)設(shè){一人患這種疾病的年齡在區(qū)間},根據(jù)對立事件的概率公式即可解出;(3)根據(jù)條件概率公式即可求出.【詳解】(1)平均年齡
(歲).(2)設(shè){一人患這種疾病的年齡在區(qū)間},所以.(3)設(shè)“任選一人年齡位于區(qū)間[40,50)”,“從該地區(qū)中任選一人患這種疾病”,則由已知得:,則由條件概率公式可得從該地區(qū)中任選一人,若此人的年齡位于區(qū)間,此人患這種疾病的概率為.11.(2021·全國·高考真題)某廠研制了一種生產(chǎn)高精產(chǎn)品的設(shè)備,為檢驗新設(shè)備生產(chǎn)產(chǎn)品的某項指標(biāo)有無提高,用一臺舊設(shè)備和一臺新設(shè)備各生產(chǎn)了10件產(chǎn)品,得到各件產(chǎn)品該項指標(biāo)數(shù)據(jù)如下:舊設(shè)備9.810.310.010.29.99.810.010.110.29.7新設(shè)備10.110.410.110.010.110.310.610.510.410.5舊設(shè)備和新設(shè)備生產(chǎn)產(chǎn)品的該項指標(biāo)的樣本平均數(shù)分別記為和,樣本方差分別記為和.(1)求,,,;(2)判斷新設(shè)備生產(chǎn)產(chǎn)品的該項指標(biāo)的均值較舊設(shè)備是否有顯著提高(如果,則認為新設(shè)備生產(chǎn)產(chǎn)品的該項指標(biāo)的均值較舊設(shè)備有顯著提高,否則不認為有顯著提高).【答案】(1);(2)新設(shè)備生產(chǎn)產(chǎn)品的該項指標(biāo)的均值較舊設(shè)備有顯著提高.【分析】(1)根據(jù)平均數(shù)和方差的計算方法,計算出平均數(shù)和方差.(2)根據(jù)題目所給判斷依據(jù),結(jié)合(1)的結(jié)論進行判斷.【詳解】(1),,,.(2)依題意,,,,所以新設(shè)備生產(chǎn)產(chǎn)品的該項指標(biāo)的均值較舊設(shè)備有顯著提高.考點02古典概型與排列組合一、單選題1.(2023·全國·高考真題)某學(xué)校為了解學(xué)生參加體育運動的情況,用比例分配的分層隨機抽樣方法作抽樣調(diào)查,擬從初中部和高中部兩層共抽取60名學(xué)生,已知該校初中部和高中部分別有400名和200名學(xué)生,則不同的抽樣結(jié)果共有(
).A.種 B.種C.種 D.種【答案】D【分析】利用分層抽樣的原理和組合公式即可得到答案.【詳解】根據(jù)分層抽樣的定義知初中部共抽取人,高中部共抽取,根據(jù)組合公式和分步計數(shù)原理則不同的抽樣結(jié)果共有種.故選:D.2.(2023·全國·高考真題)甲乙兩位同學(xué)從6種課外讀物中各自選讀2種,則這兩人選讀的課外讀物中恰有1種相同的選法共有(
)A.30種 B.60種 C.120種 D.240種【答案】C【分析】相同讀物有6種情況,剩余兩種讀物的選擇再進行排列,最后根據(jù)分步乘法公式即可得到答案.【詳解】首先確定相同得讀物,共有種情況,然后兩人各自的另外一種讀物相當(dāng)于在剩余的5種讀物里,選出兩種進行排列,共有種,根據(jù)分步乘法公式則共有種,故選:C.3.(2023·全國·高考真題)現(xiàn)有5名志愿者報名參加公益活動,在某一星期的星期六、星期日兩天,每天從這5人中安排2人參加公益活動,則恰有1人在這兩天都參加的不同安排方式共有(
)A.120 B.60 C.30 D.20【答案】B【分析】利用分類加法原理,分類討論五名志愿者連續(xù)參加兩天公益活動的情況,即可得解.【詳解】不妨記五名志愿者為,假設(shè)連續(xù)參加了兩天公益活動,再從剩余的4人抽取2人各參加星期六與星期天的公益活動,共有種方法,同理:連續(xù)參加了兩天公益活動,也各有種方法,所以恰有1人連續(xù)參加了兩天公益活動的選擇種數(shù)有種.故選:B.4.(2022·全國·高考真題)從2至8的7個整數(shù)中隨機取2個不同的數(shù),則這2個數(shù)互質(zhì)的概率為(
)A. B. C. D.【答案】D【分析】由古典概型概率公式結(jié)合組合、列舉法即可得解.【詳解】從2至8的7個整數(shù)中隨機取2個不同的數(shù),共有種不同的取法,若兩數(shù)不互質(zhì),不同的取法有:,共7種,故所求概率.故選:D.5.(2022·全國·高考真題)有甲、乙、丙、丁、戊5名同學(xué)站成一排參加文藝匯演,若甲不站在兩端,丙和丁相鄰,則不同排列方式共有(
)A.12種 B.24種 C.36種 D.48種【答案】B【分析】利用捆綁法處理丙丁,用插空法安排甲,利用排列組合與計數(shù)原理即可得解【詳解】因為丙丁要在一起,先把丙丁捆綁,看做一個元素,連同乙,戊看成三個元素排列,有種排列方式;為使甲不在兩端,必須且只需甲在此三個元素的中間兩個位置任選一個位置插入,有2種插空方式;注意到丙丁兩人的順序可交換,有2種排列方式,故安排這5名同學(xué)共有:種不同的排列方式,故選:B6.(2021·全國·高考真題)將5名北京冬奧會志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個項目進行培訓(xùn),每名志愿者只分配到1個項目,每個項目至少分配1名志愿者,則不同的分配方案共有(
)A.60種 B.120種 C.240種 D.480種【答案】C【分析】先確定有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個小組,有種選法;然后連同其余三人,看成四個元素,四個項目看成四個不同的位置,四個不同的元素在四個不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.7.(2021·全國·高考真題)將4個1和2個0隨機排成一行,則2個0不相鄰的概率為(
)A. B. C. D.【答案】C【詳解】將4個1和2個0隨機排成一行,可利用插空法,4個1產(chǎn)生5個空,若2個0相鄰,則有種排法,若2個0不相鄰,則有種排法,所以2個0不相鄰的概率為.故選:C.8.(2020·山東·高考真題)6名同學(xué)到甲、乙、丙三個場館做志愿者,每名同學(xué)只去1個場館,甲場館安排1名,乙場館安排2名,丙場館安排3名,則不同的安排方法共有(
)A.120種 B.90種C.60種 D.30種【答案】C【分析】分別安排各場館的志愿者,利用組合計數(shù)和乘法計數(shù)原理求解.【詳解】首先從名同學(xué)中選名去甲場館,方法數(shù)有;然后從其余名同學(xué)中選名去乙場館,方法數(shù)有;最后剩下的名同學(xué)去丙場館.故不同的安排方法共有種.故選:C【點睛】本小題主要考查分步計數(shù)原理和組合數(shù)的計算,屬于基礎(chǔ)題.9.(2020·海南·高考真題)要安排3名學(xué)生到2個鄉(xiāng)村做志愿者,每名學(xué)生只能選擇去一個村,每個村里至少有一名志愿者,則不同的安排方法共有(
)A.2種 B.3種 C.6種 D.8種【答案】C【分析】首先將3名學(xué)生分成兩個組,然后將2組學(xué)生安排到2個村即可.【詳解】第一步,將3名學(xué)生分成兩個組,有種分法第二步,將2組學(xué)生安排到2個村,有種安排方法所以,不同的安排方法共有種故選:C二、填空題10.(2024·全國·高考真題)在如圖的4×4的方格表中選4個方格,要求每行和每列均恰有一個方格被選中,則共有種選法,在所有符合上述要求的選法中,選中方格中的4個數(shù)之和的最大值是.【答案】24112【分析】由題意可知第一、二、三、四列分別有4、3、2、1個方格可選;利用列舉法寫出所有的可能結(jié)果,即可求解.【詳解】由題意知,選4個方格,每行和每列均恰有一個方格被選中,則第一列有4個方格可選,第二列有3個方格可選,第三列有2個方格可選,第四列有1個方格可選,所以共有種選法;每種選法可標(biāo)記為,分別表示第一、二、三、四列的數(shù)字,則所有的可能結(jié)果為:,,,,所以選中的方格中,的4個數(shù)之和最大,為.故答案為:24;11211.(2024·全國·高考真題)有6個相同的球,分別標(biāo)有數(shù)字1、2、3、4、5、6,從中無放回地隨機取3次,每次取1個球.記為前兩次取出的球上數(shù)字的平均值,為取出的三個球上數(shù)字的平均值,則與之差的絕對值不大于的概率為.【答案】【分析】根據(jù)排列可求基本事件的總數(shù),設(shè)前兩個球的號碼為,第三個球的號碼為,則,就的不同取值分類討論后可求隨機事件的概率.【詳解】從6個不同的球中不放回地抽取3次,共有種,設(shè)前兩個球的號碼為,第三個球的號碼為,則,故,故,故,若,則,則為:,故有2種,若,則,則為:,,故有10種,當(dāng),則,則為:,,故有16種,當(dāng),則,同理有16種,當(dāng),則,同理有10種,當(dāng),則,同理有2種,共與的差的絕對值不超過時不同的抽取方法總數(shù)為,故所求概率為.故答案為:12.(2023·全國·高考真題)某學(xué)校開設(shè)了4門體育類選修課和4門藝術(shù)類選修課,學(xué)生需從這8門課中選修2門或3門課,并且每類選修課至少選修1門,則不同的選課方案共有種(用數(shù)字作答).【答案】64【分析】分類討論選修2門或3門課,對選修3門,再討論具體選修課的分配,結(jié)合組合數(shù)運算求解.【詳解】(1)當(dāng)從8門課中選修2門,則不同的選課方案共有種;(2)當(dāng)從8門課中選修3門,①若體育類選修課1門,則不同的選課方案共有種;②若體育類選修課2門,則不同的選課方案共有種;綜上所述:不同的選課方案共有種.故答案為:64.13.(2022·全國·高考真題)從甲、乙等5名同學(xué)中隨機選3名參加社區(qū)服務(wù)工作,則甲、乙都入選的概率為.【答案】/0.3【分析】根據(jù)古典概型計算即可【詳解】解法一:設(shè)這5名同學(xué)分別為甲,乙,1,2,3,從5名同學(xué)中隨機選3名,有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10種選法;其中,甲、乙都入選的選法有3種,故所求概率.故答案為:.解法二:從5名同學(xué)中隨機選3名的方法數(shù)為甲、乙都入選的方法數(shù)為,所以甲、乙都入選的概率故答案為:14.(2022·全國·高考真題)從正方體的8個頂點中任選4個,則這4個點在同一個平面的概率為.【答案】.【分析】根據(jù)古典概型的概率公式即可求出.【詳解】從正方體的個頂點中任取個,有個結(jié)果,這個點在同一個平面的有個,故所求概率.故答案為:.考點03正態(tài)分布、離散型分布及應(yīng)用一、單選題1.(2021·全國·高考真題)某物理量的測量結(jié)果服從正態(tài)分布,下列結(jié)論中不正確的是(
)A.越小,該物理量在一次測量中在的概率越大B.該物理量在一次測量中大于10的概率為0.5C.該物理量在一次測量中小于9.99與大于10.01的概率相等D.該物理量在一次測量中落在與落在的概率相等【答案】D【分析】由正態(tài)分布密度曲線的特征逐項判斷即可得解.【詳解】對于A,為數(shù)據(jù)的方差,所以越小,數(shù)據(jù)在附近越集中,所以測量結(jié)果落在內(nèi)的概率越大,故A正確;對于B,由正態(tài)分布密度曲線的對稱性可知該物理量一次測量大于10的概率為,故B正確;對于C,由正態(tài)分布密度曲線的對稱性可知該物理量一次測量結(jié)果大于的概率與小于的概率相等,故C正確;對于D,因為該物理量一次測量結(jié)果落在的概率與落在的概率不同,所以一次測量結(jié)果落在的概率與落在的概率不同,故D錯誤.故選:D.二、多選題2.(2024·全國·高考真題)隨著“一帶一路”國際合作的深入,某茶葉種植區(qū)多措并舉推動茶葉出口.為了解推動出口后的畝收入(單位:萬元)情況,從該種植區(qū)抽取樣本,得到推動出口后畝收入的樣本均值,樣本方差,已知該種植區(qū)以往的畝收入服從正態(tài)分布,假設(shè)推動出口后的畝收入服從正態(tài)分布,則(
)(若隨機變量Z服從正態(tài)分布,)A. B.C. D.【答案】BC【分析】根據(jù)正態(tài)分布的原則以及正態(tài)分布的對稱性即可解出.【詳解】依題可知,,所以,故,C正確,D錯誤;因為,所以,因為,所以,而,B正確,A錯誤,故選:BC.3.(2020·山東·高考真題)信息熵是信息論中的一個重要概念.設(shè)隨機變量X所有可能的取值為,且,定義X的信息熵.則(
)A.若n=1,則H(X)=0B.若n=2,則H(X)隨著的增大而增大C.若,則H(X)隨著n的增大而增大D.若n=2m,隨機變量Y所有可能的取值為,且,則H(X)≤H(Y)【答案】AC【分析】對于A選項,求得,由此判斷出A選項;對于B選項,利用特殊值法進行排除;對于C選項,計算出,利用對數(shù)函數(shù)的性質(zhì)可判斷出C選項;對于D選項,計算出,利用基本不等式和對數(shù)函數(shù)的性質(zhì)判斷出D選項.【詳解】對于A選項,若,則,所以,所以A選項正確.對于B選項,若,則,,所以,當(dāng)時,,當(dāng)時,,兩者相等,所以B選項錯誤.對于C選項,若,則,則隨著的增大而增大,所以C選項正確.對于D選項,若,隨機變量的所有可能的取值為,且()..由于,所以,所以,所以,所以,所以D選項錯誤.故選:AC三、填空題4.(2024·全國·高考真題)甲、乙兩人各有四張卡片,每張卡片上標(biāo)有一個數(shù)字,甲的卡片上分別標(biāo)有數(shù)字1,3,5,7,乙的卡片上分別標(biāo)有數(shù)字2,4,6,8,兩人進行四輪比賽,在每輪比賽中,兩人各自從自己持有的卡片中隨機選一張,并比較所選卡片上數(shù)字的大小,數(shù)字大的人得1分,數(shù)字小的人得0分,然后各自棄置此輪所選的卡片(棄置的卡片在此后的輪次中不能使用).則四輪比賽后,甲的總得分不小于2的概率為.【答案】/0.5【分析】將每局的得分分別作為隨機變量,然后分析其和隨機變量即可.【詳解】設(shè)甲在四輪游戲中的得分分別為,四輪的總得分為.對于任意一輪,甲乙兩人在該輪出示每張牌的概率都均等,其中使得甲得分的出牌組合有六種,從而甲在該輪得分的概率,所以.從而.記.如果甲得0分,則組合方式是唯一的:必定是甲出1,3,5,7分別對應(yīng)乙出2,4,6,8,所以;如果甲得3分,則組合方式也是唯一的:必定是甲出1,3,5,7分別對應(yīng)乙出8,2,4,6,所以.而的所有可能取值是0,1,2,3,故,.所以,,兩式相減即得,故.所以甲的總得分不小于2的概率為.故答案為:.【點睛】關(guān)鍵點點睛:本題的關(guān)鍵在于將問題轉(zhuǎn)化為隨機變量問題,利用期望的可加性得到等量關(guān)系,從而避免繁瑣的列舉.5.(2022·全國·高考真題)已知隨機變量X服從正態(tài)分布,且,則.【答案】/.【分析】根據(jù)正態(tài)分布曲線的性質(zhì)即可解出.【詳解】因為,所以,因此.故答案為:.四、解答題6.(2024·全國·高考真題)某投籃比賽分為兩個階段,每個參賽隊由兩名隊員組成,比賽具體規(guī)則如下:第一階段由參賽隊中一名隊員投籃3次,若3次都未投中,則該隊被淘汰,比賽成績?yōu)?分;若至少投中一次,則該隊進入第二階段.第二階段由該隊的另一名隊員投籃3次,每次投籃投中得5分,未投中得0分.該隊的比賽成績?yōu)榈诙A段的得分總和.某參賽隊由甲、乙兩名隊員組成,設(shè)甲每次投中的概率為p,乙每次投中的概率為q,各次投中與否相互獨立.(1)若,,甲參加第一階段比賽,求甲、乙所在隊的比賽成績不少于5分的概率.(2)假設(shè),(i)為使得甲、乙所在隊的比賽成績?yōu)?5分的概率最大,應(yīng)該由誰參加第一階段比賽?(ii)為使得甲、乙所在隊的比賽成績的數(shù)學(xué)期望最大,應(yīng)該由誰參加第一階段比賽?【答案】(1)(2)(i)由甲參加第一階段比賽;(i)由甲參加第一階段比賽;【分析】(1)根據(jù)對立事件的求法和獨立事件的乘法公式即可得到答案;(2)(i)首先各自計算出,,再作差因式分解即可判斷;(ii)首先得到和的所有可能取值,再按步驟列出分布列,計算出各自期望,再次作差比較大小即可.【詳解】(1)甲、乙所在隊的比賽成績不少于5分,則甲第一階段至少投中1次,乙第二階段也至少投中1次,比賽成績不少于5分的概率.(2)(i)若甲先參加第一階段比賽,則甲、乙所在隊的比賽成績?yōu)?5分的概率為,若乙先參加第一階段比賽,則甲、乙所在隊的比賽成績?yōu)?5分的概率為,,,,應(yīng)該由甲參加第一階段比賽.(ii)若甲先參加第一階段比賽,比賽成績的所有可能取值為0,5,10,15,,,,,記乙先參加第一階段比賽,比賽成績的所有可能取值為0,5,10,15,同理,因為,則,,則,應(yīng)該由甲參加第一階段比賽.【點睛】關(guān)鍵點點睛:本題第二問的關(guān)鍵是計算出相關(guān)概率和期望,采用作差法并因式分解從而比較出大小關(guān)系,最后得到結(jié)論.7.(2022·全國·高考真題)甲、乙兩個學(xué)校進行體育比賽,比賽共設(shè)三個項目,每個項目勝方得10分,負方得0分,沒有平局.三個項目比賽結(jié)束后,總得分高的學(xué)校獲得冠軍.已知甲學(xué)校在三個項目中獲勝的概率分別為0.5,0.4,0.8,各項目的比賽結(jié)果相互獨立.(1)求甲學(xué)校獲得冠軍的概率;(2)用X表示乙學(xué)校的總得分,求X的分布列與期望.【答案】(1);(2)分布列見解析,.【分析】(1)設(shè)甲在三個項目中獲勝的事件依次記為,再根據(jù)甲獲得冠軍則至少獲勝兩個項目,利用互斥事件的概率加法公式以及相互獨立事件的乘法公式即可求出;(2)依題可知,的可能取值為,再分別計算出對應(yīng)的概率,列出分布列,即可求出期望.【詳解】(1)設(shè)甲在三個項目中獲勝的事件依次記為,所以甲學(xué)校獲得冠軍的概率為.(2)依題可知,的可能取值為,所以,,,,.即的分布列為01020300.160.440.340.06期望.8.(2021·全國·高考真題)某學(xué)校組織“一帶一路”知識競賽,有A,B兩類問題,每位參加比賽的同學(xué)先在兩類問題中選擇一類并從中隨機抽取一個問題回答,若回答錯誤則該同學(xué)比賽結(jié)束;若回答正確則從另一類問題中再隨機抽取一個問題回答,無論回答正確與否,該同學(xué)比賽結(jié)束.A類問題中的每個問題回答正確得20分,否則得0分;B類問題中的每個問題回答正確得80分,否則得0分,已知小明能正確回答A類問題的概率為0.8,能正確回答B(yǎng)類問題的概率為0.6,且能正確回答問題的概率與回答次序無關(guān).(1)若小明先回答A類問題,記為小明的累計得分,求的分布列;(2)為使累計得分的期望最大,小明應(yīng)選擇先回答哪類問題?并說明理由.【答案】(1)見解析;(2)類.【分析】(1)通過題意分析出小明累計得分的所有可能取值,逐一求概率列分布列即可.(2)與(1)類似,找出先回答類問題的數(shù)學(xué)期望,比較兩個期望的大小即可.【詳解】(1)由題可知,的所有可能取值為,,.;;.所以的分布列為(2)由(1)知,.若小明先回答問題,記為小明的累計得分,則的所有可能取值為,,.;;.所以.因為,所以小明應(yīng)選擇先回答類問題.考點04事件的獨立,條件概率與全概率公式應(yīng)用,獨立性檢驗一、單選題1.(2023·全國·高考真題)某地的中學(xué)生中有的同學(xué)愛好滑冰,的同學(xué)愛好滑雪,的同學(xué)愛好滑冰或愛好滑雪.在該地的中學(xué)生中隨機調(diào)查一位同學(xué),若該同學(xué)愛好滑雪,則該同學(xué)也愛好滑冰的概率為(
)A.0.8 B.0.6 C.0.5 D.0.4【答案】A【分析】先算出同時愛好兩項的概率,利用條件概率的知識求解.【詳解】同時愛好兩項的概率為,記“該同學(xué)愛好滑雪”為事件,記“該同學(xué)愛好滑冰”為事件,則,所以.故選:.2.(2022·全國·高考真題)某棋手與甲、乙、丙三位棋手各比賽一盤,各盤比賽結(jié)果相互獨立.已知該棋手與甲、乙、丙比賽獲勝的概率分別為,且.記該棋手連勝兩盤的概率為p,則(
)A.p與該棋手和甲、乙、丙的比賽次序無關(guān) B.該棋手在第二盤與甲比賽,p最大C.該棋手在第二盤與乙比賽,p最大 D.該棋手在第二盤與丙比賽,p最大【答案】D【分析】該棋手連勝兩盤,則第二盤為必勝盤.分別求得該棋手在第二盤與甲比賽且連勝兩盤的概率;該棋手在第二盤與乙比賽且連勝兩盤的概率;該棋手在第二盤與丙比賽且連勝兩盤的概率.并對三者進行比較即可解決【詳解】該棋手連勝兩盤,則第二盤為必勝盤,記該棋手在第二盤與甲比賽,比賽順序為乙甲丙及丙甲乙的概率均為,則此時連勝兩盤的概率為則;記該棋手在第二盤與乙比賽,且連勝兩盤的概率為,則記該棋手在第二盤與丙比賽,且連勝兩盤的概率為則則即,,則該棋手在第二盤與丙比賽,最大.選項D判斷正確;選項BC判斷錯誤;與該棋手與甲、乙、丙的比賽次序有關(guān).選項A判斷錯誤.故選:D3.(2021·全國·高考真題)有6個相同的球,分別標(biāo)有數(shù)字1,2,3,4,5,6,從中有放回的隨機取兩次,每次取1個球,甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是2”,丙表示事件“兩次取出的球的數(shù)字之和是8”,丁表示事件“兩次取出的球的數(shù)字之和是7”,則(
)A.甲與丙相互獨立 B.甲與丁相互獨立C.乙與丙相互獨立 D.丙與丁相互獨立【答案】B【分析】根據(jù)獨立事件概率關(guān)系逐一判斷【詳解】,故選:B二、多選題4.(2023·全國·高考真題)在信道內(nèi)傳輸0,1信號,信號的傳輸相互獨立.發(fā)送0時,收到1的概率為,收到0的概率為;發(fā)送1時,收到0的概率為,收到1的概率為.考慮兩種傳輸方案:單次傳輸和三次傳輸.單次傳輸是指每個信號只發(fā)送1次,三次傳輸是指每個信號重復(fù)發(fā)送3次.收到的信號需要譯碼,譯碼規(guī)則如下:單次傳輸時,收到的信號即為譯碼;三次傳輸時,收到的信號中出現(xiàn)次數(shù)多的即為譯碼(例如,若依次收到1,0,1,則譯碼為1).A.采用單次傳輸方案,若依次發(fā)送1,0,1,則依次收到l,0,1的概率為B.采用三次傳輸方案,若發(fā)送1,則依次收到1,0,1的概率為C.采用三次傳輸方案,若發(fā)送1,則譯碼為1的概率為D.當(dāng)時,若發(fā)送0,則采用三次傳輸方案譯碼為0的概率大于采用單次傳輸方案譯碼為0的概率【答案】ABD【分析】利用相互獨立事件的概率公式計算判斷AB;利用相互獨立事件及互斥事件的概率計算判斷C;求出兩種傳輸方案的概率并作差比較判斷D作答.【詳解】對于A,依次發(fā)送1,0,1,則依次收到l,0,1的事件是發(fā)送1接收1、發(fā)送0接收0、發(fā)送1接收1的3個事件的積,它們相互獨立,所以所求概率為,A正確;對于B,三次傳輸,發(fā)送1,相當(dāng)于依次發(fā)送1,1,1,則依次收到l,0,1的事件,是發(fā)送1接收1、發(fā)送1接收0、發(fā)送1接收1的3個事件的積,它們相互獨立,所以所求概率為,B正確;對于C,三次傳輸,發(fā)送1,則譯碼為1的事件是依次收到1,1,0、1,0,1、0,1,1和1,1,1的事件和,它們互斥,由選項B知,所以所求的概率為,C錯誤;對于D,由選項C知,三次傳輸,發(fā)送0,則譯碼為0的概率,單次傳輸發(fā)送0,則譯碼為0的概率,而,因此,即,D正確.故選:ABD【點睛】關(guān)鍵點睛:利用概率加法公式及乘法公式求概率,把要求概率的事件分拆成兩兩互斥事件的和,相互獨立事件的積是解題的關(guān)鍵.三、解答題5.(2024·全國·高考真題)某投籃比賽分為兩個階段,每個參賽隊由兩名隊員組成,比賽具體規(guī)則如下:第一階段由參賽隊中一名隊員投籃3次,若3次都未投中,則該隊被淘汰,比賽成績?yōu)?分;若至少投中一次,則該隊進入第二階段.第二階段由該隊的另一名隊員投籃3次,每次投籃投中得5分,未投中得0分.該隊的比賽成績?yōu)榈诙A段的得分總和.某參賽隊由甲、乙兩名隊員組成,設(shè)甲每次投中的概率為p,乙每次投中的概率為q,各次投中與否相互獨立.(1)若,,甲參加第一階段比賽,求甲、乙所在隊的比賽成績不少于5分的概率.(2)假設(shè),(i)為使得甲、乙所在隊的比賽成績?yōu)?5分的概率最大,應(yīng)該由誰參加第一階段比賽?(ii)為使得甲、乙所在隊的比賽成績的數(shù)學(xué)期望最大,應(yīng)該由誰參加第一階段比賽?【答案】(1)(2)(i)由甲參加第一階段比賽;(i)由甲參加第一階段比賽;【分析】(1)根據(jù)對立事件的求法和獨立事件的乘法公式即可得到答案;(2)(i)首先各自計算出,,再作差因式分解即可判斷;(ii)首先得到和的所有可能取值,再按步驟列出分布列,計算出各自期望,再次作差比較大小即可.【詳解】(1)甲、乙所在隊的比賽成績不少于5分,則甲第一階段至少投中1次,乙第二階段也至少投中1次,比賽成績不少于5分的概率.(2)(i)若甲先參加第一階段比賽,則甲、乙所在隊的比賽成績?yōu)?5分的概率為,若乙先參加第一階段比賽,則甲、乙所在隊的比賽成績?yōu)?5分的概率為,,,,應(yīng)該由甲參加第一階段比賽.(ii)若甲先參加第一階段比賽,比賽成績的所有可能取值為0,5,10,15,,,,,記乙先參加第一階段比賽,比賽成績的所有可能取值為0,5,10,15,同理,因為,則,,則,應(yīng)該由甲參加第一階段比賽.【點睛】關(guān)鍵點點睛:本題第二問的關(guān)鍵是計算出相關(guān)概率和期望,采用作差法并因式分解從而比較出大小關(guān)系,最后得到結(jié)論.6.(2024·全國·高考真題)某工廠進行生產(chǎn)線智能化升級改造,升級改造后,從該工廠甲、乙兩個車間的產(chǎn)品中隨機抽取150件進行檢驗,數(shù)據(jù)如下:優(yōu)級品合格品不合格品總計甲車間2624050乙車間70282100總計96522150(1)填寫如下列聯(lián)表:優(yōu)級品非優(yōu)級品甲車間乙車間能否有的把握認為甲、乙兩車間產(chǎn)品的優(yōu)級品率存在差異?能否有的把握認為甲,乙兩車間產(chǎn)品的優(yōu)級品率存在差異?(2)已知升級改造前該工廠產(chǎn)品的優(yōu)級品率,設(shè)為升級改造后抽取的n件產(chǎn)品的優(yōu)級品率.如果,則認為該工廠產(chǎn)品的優(yōu)級品率提高了,根據(jù)抽取的150件產(chǎn)品的數(shù)據(jù),能否認為生產(chǎn)線智能化升級改造后,該工廠產(chǎn)品的優(yōu)級品率提高了?()附:0.0500.0100.001k3.8416.63510.828【答案】(1)答案見詳解(2)答案見詳解【詳解】(1)根據(jù)題意可得列聯(lián)表:優(yōu)級品非優(yōu)級品甲車間2624乙車間7030可得,因為,所以有的把握認為甲、乙兩車間產(chǎn)品的優(yōu)級品率存在差異,沒有的把握認為甲,乙兩車間產(chǎn)品的優(yōu)級品率存在差異.(2)由題意可知:生產(chǎn)線智能化升級改造后,該工廠產(chǎn)品的優(yōu)級品的頻率為,用頻率估計概率可得,又因為升級改造前該工廠產(chǎn)品的優(yōu)級品率,則,可知,所以可以認為生產(chǎn)線智能化升級改造后,該工廠產(chǎn)品的優(yōu)級品率提高了.7.(2023·全國·高考真題)甲、乙兩人投籃,每次由其中一人投籃,規(guī)則如下:若命中則此人繼續(xù)投籃,若末命中則換為對方投籃.無論之前投籃情況如何,甲每次投籃的命中率均為0.6,乙每次投籃的命中率均為0.8.由抽簽確定第1次投籃的人選,第1次投籃的人是甲、乙的概率各為0.5.(1)求第2次投籃的人是乙的概率;(2)求第次投籃的人是甲的概率;(3)已知:若隨機變量服從兩點分布,且,則.記前次(即從第1次到第次投籃)中甲投籃的次數(shù)為,求.【答案】(1)(2)(3)【詳解】(1)記“第次投籃的人是甲”為事件,“第次投籃的人是乙”為事件,所以,.(2)設(shè),依題可知,,則,即,構(gòu)造等比數(shù)列,設(shè),解得,則,又,所以是首項為,公比為的等比數(shù)列,即.(3)因為,,所以當(dāng)時,,故.8.(2023·全國·高考真題)一項試驗旨在研究臭氧效應(yīng).實驗方案如下:選40只小白鼠,隨機地將其中20只分配到實驗組,另外20只分配到對照組,實驗組的小白鼠飼養(yǎng)在高濃度臭氧環(huán)境,對照組的小白鼠飼養(yǎng)在正常環(huán)境,一段時間后統(tǒng)計每只小白鼠體重的增加量(單位:g).(1)設(shè)表示指定的兩只小白鼠中分配到對照組的只數(shù),求的分布列和數(shù)學(xué)期望;(2)實驗結(jié)果如下:對照組的小白鼠體重的增加量從小到大排序為:15.2
18.8
20.2
21.3
22.5
23.2
25.8
26.5
27.5
30.132.6
34.3
34.8
35.6
35.6
35.8
36.2
37.3
40.5
43.2實驗組的小白鼠體重的增加量從小到大排序為:7.8
9.2
11.4
12.4
13.2
15.5
16.5
18.0
18.8
19.219.8
20.2
21.6
22.8
23.6
23.9
25.1
28.2
32.3
36.5(i)求40只小鼠體重的增加量的中位數(shù)m,再分別統(tǒng)計兩樣本中小于m與不小于的數(shù)據(jù)的個數(shù),完成如下列聯(lián)表:對照組實驗組(ii)根據(jù)(i)中的列聯(lián)表,能否有95%的把握認為小白鼠在高濃度臭氧環(huán)境中與正常環(huán)境中體重的增加量有差異.附:0.1000.0500.0102.7063.8416.635【答案】(1)分布列見解析,(2)(i);列聯(lián)表見解析,(ii)能【分析】(1)利用超幾何分布的知識即可求得分布列及數(shù)學(xué)期望;(2)(i)根據(jù)中位數(shù)的定義即可求得,從而求得列聯(lián)表;(ii)利用獨立性檢驗的卡方計算進行檢驗,即可得解.【詳解】(1)依題意,的可能取值為,則,,,所以的分布列為:故.(2)(i)依題意,可知這40只小白鼠體重增量的中位數(shù)是將兩組數(shù)據(jù)合在一起,從小到大排后第20位與第21位數(shù)據(jù)的平均數(shù),觀察數(shù)據(jù)可得第20位為,第21位數(shù)據(jù)為,所以,故列聯(lián)表為:合計對照組61420實驗組14620合計202040(ii)由(i)可得,,所以能有的把握認為小白鼠在高濃度臭氧環(huán)境中與正常環(huán)境中體重的增加量有差異.9.(2022·全國·高考真題)一醫(yī)療團隊為研究某地的一種地方性疾病與當(dāng)?shù)鼐用竦男l(wèi)生習(xí)慣(衛(wèi)生習(xí)慣分為良好和不夠良好兩類)的關(guān)系,在已患該疾病的病例中隨機調(diào)查了100例(稱為病例組),同時在未患該疾病的人群中隨機調(diào)查了100人(稱為對照組),得到如下數(shù)據(jù):不夠良好良好病例組4060對照組1090(1)能否有99%的把握認為患該疾病群體與未患該疾病群體的衛(wèi)生習(xí)慣有差異?(2)從該地的人群中任選一人,A表示事件“選到的人衛(wèi)生習(xí)慣不夠良好”,B表示事件“選到的人患有該疾病”.與的比值是衛(wèi)生習(xí)慣不夠良好對患該疾病風(fēng)險程度的一項度量指標(biāo),記該指標(biāo)為R.(?。┳C明:;(ⅱ)利用該調(diào)查數(shù)據(jù),給出的估計值,并利用(ⅰ)的結(jié)果給出R的估計值.附,0.0500.0100.001k3.8416.63510.828【答案】(1)答案見解析(2)(i)證明見解析;(ii);【分析】(1)由所給數(shù)據(jù)結(jié)合公式求出的值,將其與臨界值比較大小,由此確定是否有99%的把握認為患該疾病群體與未患該疾病群體的衛(wèi)生習(xí)慣有差異;(2)(i)根據(jù)定義結(jié)合條件概率公式即可完成證明;(ii)根據(jù)(i)結(jié)合已知數(shù)據(jù)求.【詳解】(1)由已知,又,,所以有99%的把握認為患該疾病群體與未患該疾病群體的衛(wèi)生習(xí)慣有差異.(2)(i)因為,所以所以,(ii)由已知,,又,,所以10.(2021·全國·高考真題)甲、乙兩臺機床生產(chǎn)同種產(chǎn)品,產(chǎn)品按質(zhì)量分為一級品和二級品,為了比較兩臺機床產(chǎn)品的質(zhì)量,分別用兩臺機床各生產(chǎn)了200件產(chǎn)品,產(chǎn)品的質(zhì)量情況統(tǒng)計如下表:一級品二級品合計甲機床15050200乙機床12080200合計270130400(1)甲機床、乙機床生產(chǎn)的產(chǎn)品中一級品的頻率分別是多少?(2)能否有99%的把握認為甲機床的產(chǎn)品質(zhì)量與乙機床的產(chǎn)品質(zhì)量有差異?附:0.0500.0100.001k3.8416.63510.828【答案】(1)75%;60%;(2)能.【分析】根據(jù)給出公式計算即可【詳解】(1)甲機床生產(chǎn)的產(chǎn)品中的一級品的頻率為,乙機床生產(chǎn)的產(chǎn)品中的一級品的頻率為.(2),故能有99%的把握認為甲機床的產(chǎn)品與乙機床的產(chǎn)品質(zhì)量有差異.11.(2020·山東·高考真題)為加強環(huán)境保護,治理空氣污染,環(huán)境監(jiān)測部門對某市空氣質(zhì)量進行調(diào)研,隨機抽查了天空氣中的和濃度(單位:),得下表:(1)估計事件“該市一天空氣中濃度不超過,且濃度不超過”的概率;(2)根據(jù)所給數(shù)據(jù),完成下面的列聯(lián)表:(3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認為該市一天空氣中濃度與濃度有關(guān)?附:,【答案】(1);(2)答案見解析;(3)有.【分析】(1)根據(jù)表格中數(shù)據(jù)以及古典概型的概率公式可求得結(jié)果;(2)根據(jù)表格中數(shù)據(jù)可得列聯(lián)表;(3)計算出,結(jié)合臨界值表可得結(jié)論.【詳解】(1)由表格可知,該市100天中,空氣中的濃度不超過75,且濃度不超過150的天數(shù)有天,所以該市一天中,空氣中的濃度不超過75,且濃度不超過150的概率為;(2)由所給數(shù)據(jù),可得列聯(lián)表為:合計641680101020合計7426100(3)根據(jù)列聯(lián)表中的數(shù)據(jù)可得,因為根據(jù)臨界值表可知,有的把握認為該市一天空氣中濃度與濃度有關(guān).考點05概率綜合應(yīng)用一、多選題1.(2023·全國·高考真題)在信道內(nèi)傳輸0,1信號,信號的傳輸相互獨立.發(fā)送0時,收到1的概率為,收到0的概率為;發(fā)送1時,收到0的概率為,收到1的概率為.考慮兩種傳輸方案:單次傳輸和三次傳輸.單次傳輸是指每個信號只發(fā)送1次,三次傳輸是指每個信號重復(fù)發(fā)送3次.收到的信號需要譯碼,譯碼規(guī)則如下:單次傳輸時,收到的信號即為譯碼;三次傳輸時,收到的信號中出現(xiàn)次數(shù)多的即為譯碼(例如,若依次收到1,0,1,則譯碼為1).A.采用單次傳輸方案,若依次發(fā)送1,0,1,則依次收到l,0,1的概率為B.采用三次傳輸方案,若發(fā)送1,則依次收到1,0,1的概率為C.采用三次傳輸方案,若發(fā)送1,則譯碼為1的概率為D.當(dāng)時,若發(fā)送0,則采用三次傳輸方案譯碼為0的概率大于采用單次傳輸方案譯碼為0的概率【答案】ABD【分析】利用相互獨立事件的概率公式計算判斷AB;利用相互獨立事件及互斥事件的概率計算判斷C;求出兩種傳輸方案的概率并作差比較判斷D作答.【詳解】對于A,依次發(fā)送1,0,1,則依次收到l,0,1的事件是發(fā)送1接收1、發(fā)送0接收0、發(fā)送1接收1的3個事件的積,它們相互獨立,所以所求概率為,A正確;對于B,三次傳輸,發(fā)送1,相當(dāng)于依次發(fā)送1,1,1,則依次收到l,0,1的事件,是發(fā)送1接收1、發(fā)送1接收0、發(fā)送1接收1的3個事件的積,它們相互獨立,所以所求概率為,B正確;對于C,三次傳輸,發(fā)送1,則譯碼為1的事件是依次收到1,1,0、1,0,1、0,1,1和1,1,1的事件和,它們互斥,由選項B知,所以所求的概率為,C錯誤;對于D,由選項C知,三次傳輸,發(fā)送0,則譯碼為0的概率,單次傳輸發(fā)送0,則譯碼為0的概率,而,因此,即,D正確.故選:ABD二、解答題2.(2024·全國·高考真題)設(shè)m為正整數(shù),數(shù)列是公差不為0的等差數(shù)列,若從中刪去兩項和后剩余的項可被平均分為組,且每組的4個數(shù)都能構(gòu)成等差數(shù)列,則稱數(shù)列是可分數(shù)列.(1)寫出所有的,,使數(shù)列是可分數(shù)列;(2)當(dāng)時,證明:數(shù)列是可分數(shù)列;(3)從中一次任取兩個數(shù)和,記數(shù)列是可分數(shù)列的概率為,證明:.【答案】(1)(2)證明見解析(3)證明見解析【詳解】(1)首先,我們設(shè)數(shù)列的公差為,則.由于一個數(shù)列同時加上一個數(shù)或者乘以一個非零數(shù)后是等差數(shù)列,當(dāng)且僅當(dāng)該數(shù)列是等差數(shù)列,故我們可以對該數(shù)列進行適當(dāng)?shù)淖冃?,得到新?shù)列,然后對進行相應(yīng)的討論即可.換言之,我們可以不妨設(shè),此后的討論均建立在該假設(shè)下進行.回到原題,第1小問相當(dāng)于從中取出兩個數(shù)和,使得剩下四個數(shù)是等差數(shù)列.那么剩下四個數(shù)只可能是,或,或.所以所有可能的就是.(2)由于從數(shù)列中取出和后,剩余的個數(shù)可以分為以下兩個部分,共組,使得每組成等差數(shù)列:①,共組;②,共組.(如果,則忽略②)故數(shù)列是可分數(shù)列.(3)定義集合,.下面證明,對,如果下面兩個命題同時成立,則數(shù)列一定是可分數(shù)列:命題1:或;命題2:.我們分兩種情況證明這個結(jié)論.第一種情況:如果,且.此時設(shè),,.則由可知,即,故.此時,由于從數(shù)列中取出和后,剩余的個數(shù)可以分為以下三個部分,共組,使得每組成等差數(shù)列:①,共組;②,共組;③,共組.(如果某一部分的組數(shù)為,則忽略之)故此時數(shù)列是可分數(shù)列.第二種情況:如果,且.此時設(shè),,.則由可知,即,故.由于,故,從而,這就意味著.此時,由于從數(shù)列中取出和后,剩余的個數(shù)可以分為以下四個部分,共組,使得每組成等差數(shù)列:①,共組;②,,共組;③全體,其中,共組;④,共組.(如果某一部分的組數(shù)為,則忽略之)這里對②和③進行一下解釋:將③中的每一組作為一個橫排,排成一個包含
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國表面肌電測試系統(tǒng)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國一次鋰亞硫酰氯電池行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國動態(tài)圖像粒度粒形分析系統(tǒng)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2023年全球及中國無人駕駛接駁小巴行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025小飯店員工的勞動合同范本
- 出境旅游合同書
- 2025辦公室裝修合同書集錦
- 房產(chǎn)股權(quán)轉(zhuǎn)讓合同
- 存量房買賣合同合同范本
- 陸路貨物運輸合同承運人定義年
- 2023學(xué)年度第一學(xué)期高三英語備課組工作總結(jié)
- 臨建標(biāo)準(zhǔn)化圖集新版
- 安監(jiān)人員考核細則(2篇)
- 生活老師培訓(xùn)資料課件
- 2020年新概念英語第一冊lesson97-102單元檢測
- 腹主動脈瘤(護理業(yè)務(wù)學(xué)習(xí))
- 注射用醋酸亮丙瑞林微球
- 大學(xué)生就業(yè)指導(dǎo)PPT(第2版)全套完整教學(xué)課件
- 家具安裝工培訓(xùn)教案優(yōu)質(zhì)資料
- 湖南大一型抽水蓄能電站施工及質(zhì)量創(chuàng)優(yōu)匯報
- envi二次開發(fā)素材包-idl培訓(xùn)
評論
0/150
提交評論