山東省寧津縣保店中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
山東省寧津縣保店中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
山東省寧津縣保店中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
山東省寧津縣保店中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
山東省寧津縣保店中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東省寧津縣保店中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,,則,,的大小關(guān)系是()A. B.C. D.2.函數(shù)y=的定義域是()A. B.C. D.3.已知集合,且,則的值可能為()A. B.C.0 D.14.某幾何體的三視圖如圖所示,則該幾何體的表面積等于A. B.C. D.155.若函數(shù)(,且)在區(qū)間上單調(diào)遞增,則A., B.,C., D.,6.在梯形中,,,是邊上的點,且.若記,,則()A. B.C. D.7.已知,則角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限8.已知函數(shù)在[2,3]上單調(diào)遞減,則實數(shù)a的取值范圍是()A. B.C. D.9.若角與終邊相同,則一定有()A. B.C., D.,10.菱形ABCD在平面α內(nèi),PC⊥α,則PA與BD的位置關(guān)系是()A.平行 B.相交但不垂直C.垂直相交 D.異面且垂直二、填空題:本大題共6小題,每小題5分,共30分。11.已知奇函數(shù)f(x),當(dāng)x>0,fx=x212.奇函數(shù)的定義域為,若在上單調(diào)遞減,且,則實數(shù)的取值范圍是________________.13.一個底面積為1的正四棱柱的八個頂點都在同一球面上,若這個正四棱柱的高為,則該球的表面積為__________14.已知函數(shù)是定義在的偶函數(shù),且當(dāng)時,若函數(shù)有8個零點,分別記為,,,,,,,,則的取值范圍是______.15.已知正四棱錐的底面邊長為4cm,高與斜高的夾角為,則該正四棱錐的側(cè)面積等于________cm216.邊長為3的正方形的四個頂點都在球上,與對角線的夾角為45°,則球的體積為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知不等式x2+ax+b<0(a,b∈R(1)求實數(shù)a,b的值;(2)若集合B=xx<0,求A∩B,18.已知函數(shù)(1)求方程在上的解;(2)求證:對任意的,方程都有解19.已知函數(shù)(1)求的單調(diào)增區(qū)間;(2)當(dāng)時,求函數(shù)最大值和最小值.20.已知圓的標(biāo)準(zhǔn)方程為,圓心為,直線的方程為,點在直線上,過點作圓的切線,,切點分別為,(1)若,試求點的坐標(biāo);(2)若點的坐標(biāo)為,過作直線與圓交于兩點,當(dāng)時,求直線的方程;(3)求證:經(jīng)過,,三點的圓必過定點,并求出所有定點的坐標(biāo)21.已知函數(shù).(1)求最小正周期;(2)當(dāng)時,求的值域.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)題意不妨設(shè),利用對數(shù)的運算性質(zhì)化簡x,利用指數(shù)函數(shù)的單調(diào)性求出y的取值范圍,利用指數(shù)冪的運算求出z,進而得出結(jié)果.【詳解】由,不妨設(shè),則,,,所以,故選:B2、A【解析】根據(jù)偶次方根的被開方數(shù)為非負(fù)數(shù),對數(shù)的真數(shù)大于零列不等式,由此求得函數(shù)的定義域.【詳解】依題意,所以的定義域為.故選:A3、C【解析】化簡集合得范圍,結(jié)合判斷四個選項即可【詳解】集合,四個選項中,只有,故選:C【點睛】本題考查元素與集合的關(guān)系,屬于基礎(chǔ)題4、B【解析】根據(jù)三視圖可知,該幾何體為一個直四棱柱,底面是直角梯形,兩底邊長分別為,高為,直四棱柱的高為,所以底面周長為,故該幾何體的表面積為,故選B考點:1.三視圖;2.幾何體的表面積5、B【解析】函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間內(nèi)不等于,故當(dāng)時,函數(shù)才能遞增故選6、A【解析】作出圖形,由向量加法的三角形法則得出可得出答案.【詳解】如下圖所示:由題意可得,由向量加法的三角形法則可得.故選:A.【點睛】本題考查利用基底來表示向量,涉及平面向量加法的三角形法則的應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.7、A【解析】根據(jù)題意,由于,則說明正弦值和余弦值都是正數(shù),因此可知角所在的象限是第一象限,故選A.考點:三角函數(shù)的定義點評:主要是考查了三角函數(shù)的定義的運用,屬于基礎(chǔ)題8、C【解析】根據(jù)復(fù)合函數(shù)的單調(diào)性法則“同增異減”求解即可.【詳解】由于函數(shù)在上單調(diào)遞減,在定義域內(nèi)是增函數(shù),所以根據(jù)復(fù)合函數(shù)的單調(diào)性法則“同增異減”得:在上單調(diào)遞減,且,所以且,解得:.故的取值范圍是故選:C.9、C【解析】根據(jù)終邊相同角的表示方法判斷【詳解】角與終邊相同,則,,只有C選項滿足,故選:C10、D【解析】由菱形ABCD平面內(nèi),則對角線,又,可得平面,進而可得,又顯然,PA與BD不在同一平面內(nèi),可判斷其位置關(guān)系.【詳解】假設(shè)PA與BD共面,根據(jù)條件點和菱形ABCD都在平面內(nèi),這與條件相矛盾.故假設(shè)不成立,即PA與BD異面.又在菱形ABCD中,對角線,,,則且,所以平面平面.則,所以PA與BD異面且垂直.故選:D【點睛】本題考查異面直線的判定和垂直關(guān)系的證明,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、-10【解析】根據(jù)函數(shù)奇偶性把求f-2的值,轉(zhuǎn)化成求f2【詳解】由f(x)為奇函數(shù),可知f-x=-f又當(dāng)x>0,fx=故f故答案為:-1012、【解析】因為奇函數(shù)的定義域為,若在上單調(diào)遞減,所以在定義域上遞減,且,所以解得,故填.點睛:利用奇函數(shù)及其增減性解不等式時,一方面要確定函數(shù)的增減性,注意奇函數(shù)在對稱區(qū)間上單調(diào)性一致,同時還要注意函數(shù)的定義域?qū)栴}的限制,以免遺漏造成錯誤.13、【解析】底面為正方形,對角線長為.故圓半徑為,故球的表面積為.【點睛】本題主要考查幾何體的外接球問題.解決與幾何體外接球有關(guān)的數(shù)學(xué)問題時,主要是要找到球心所在的位置,并計算出球的半徑.尋找球心的一般方法是先找到一個面的外心,如本題中底面正方形的中心,球心就在這個外心的正上方,根據(jù)圖形的對稱性,易得球心就在正四棱柱中間的位置.14、【解析】由偶函數(shù)的對稱性,將轉(zhuǎn)化為,再根據(jù)二次函數(shù)的對稱性及對數(shù)函數(shù)的性質(zhì)可進一步轉(zhuǎn)化為,結(jié)合利用二次函數(shù)的性質(zhì)即可求解.【詳解】解:因為函數(shù)有8個零點,所以直線與函數(shù)圖像交點有8個,如圖所示:設(shè),因為函數(shù)是定義在的偶函數(shù),所以函數(shù)的圖像關(guān)于軸對稱,所以,且由二次函數(shù)對稱性有,由有,所以又,所以,所以,故答案為:.15、32【解析】在正四棱錐的高和斜高所在的直角三角形中計算出斜高后,根據(jù)三角形的面積公式即可求出側(cè)面積.【詳解】因為正四棱錐的底面邊長為4cm,高與斜高的夾角為,所以斜高為cm,所以該正四棱錐的側(cè)面積等于cm2故答案為:32.【點睛】本題考查了正棱錐的結(jié)構(gòu)特征,考查了求正四棱錐的側(cè)面積,屬于基礎(chǔ)題.16、【解析】根據(jù)給定條件結(jié)合球的截面小圓性質(zhì)求出球O的半徑,再利用球的體積公式計算作答.【詳解】因邊長為3的正方形的四個頂點都在球上,則正方形的外接圓是球O的截面小圓,其半徑為,令正方形的外接圓圓心為,由球面的截面小圓性質(zhì)知是直角三角形,且有,而與對角線的夾角為45°,即是等腰直角三角形,球O半徑,所以球體積為.故答案為:【點睛】關(guān)鍵點睛:涉及求球的表面積、體積問題,利用球的截面小圓性質(zhì)是解決問題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)a=-1,b=-2(2)A∩B=x-1<x<0【解析】可根據(jù)題意條件,此一元二次不等式的解集轉(zhuǎn)化成此一元二次方程的兩個跟,然后利用根與系數(shù)的關(guān)系,即可完成求解;可根據(jù)集合A、B的范圍分別求解出A∩B,A∪?R【小問1詳解】因為不等式的解集為A=x所以x1=-1,x2=2則有1-a+b=0,4+2a+b=0,解得a=-1,b【小問2詳解】因為A=x-1<x<2,所以A∩B=x-1<x<0,?18、(1)或;(2)證明見解析【解析】(1)根據(jù)誘導(dǎo)公式和正弦、余弦函數(shù)的性質(zhì)可得答案;(2)令,分,,三種情況,分別根據(jù)零點存在定理可得證.【詳解】解:(1)由,得,所以當(dāng)時,上述方程的解為或,即方程在上的解為或;(2)證明:令,則,①當(dāng)時,,令,則,即此時方程有解;②當(dāng)時,,又∵在區(qū)間上是不間斷的一條曲線,由零點存在性定理可知,在區(qū)間上有零點,即此時方程有解;③當(dāng)時,,,又∵在區(qū)間上是不間斷的一條曲線,由零點存在性定理可知,在區(qū)間上有零點,即此時方程有解綜上,對任意的,方程都有解19、(1)單調(diào)遞增區(qū)間為;(2),.【解析】(1)利用和差公式和倍角公式把化為,然后可解出答案;(2)求出的范圍,然后由正弦函數(shù)的知識可得答案.【詳解】(1)由可得單調(diào)遞增區(qū)間為(2),即時,即時,20、(1)或;(2)或;(3)詳見解析【解析】(1)點在直線上,設(shè),由對稱性可知,可得,從而可得點坐標(biāo).(2)分析可知直線的斜率一定存在,設(shè)其方程為:.由已知分析可得圓心到直線的距離為,由點到線的距離公式可求得的值.(3)由題意知,即.所以過三點的圓必以為直徑.設(shè),從而可得圓的方程,根據(jù)的任意性可求得此圓所過定點試題解析:解:(1)直線的方程為,點在直線上,設(shè),由題可知,所以,解之得:故所求點的坐標(biāo)為或(2)易知直線的斜率一定存在,設(shè)其方程為:,由題知圓心到直線的距離為,所以,解得,或,故

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論