版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆貴州省安順市高一上數(shù)學期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線,若,則的值為()A.8 B.2C. D.-22.若直線與圓相交于兩點,且,則A2 B.C.1 D.3.已知集合,,,則()A.{6,8} B.{2,3,6,8}C.{2} D.{2,6,8}4.已知函數(shù)y=log2(x2-2kx+k)的值域為R,則k的取值范圍是()A.0<k<1 B.0≤k<1C.k≤0或k≥1 D.k=0或k≥15.下列命題正確的是()A.若,則B.若,則C.若,則D.若,則6.已知,則的值為()A. B.C. D.7.對于空間中的直線,以及平面,,下列說法正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則8.設(shè)扇形的周長為,面積為,則扇形的圓心角的弧度數(shù)是()A.1 B.2C.3 D.49.若,,且,,則函數(shù)與函數(shù)在同一坐標系中的圖像可能是()A. B.C. D.10.某工廠生產(chǎn)過程中產(chǎn)生的廢氣必須經(jīng)過過濾后才能排放,已知在過濾過程中,廢氣中的污染物含量p(單位:毫克/升)與過濾時間t(單位:小時)之間的關(guān)系為(式中的e為自然對數(shù)的底數(shù),為污染物的初始含量).過濾1小時后,檢測發(fā)現(xiàn)污染物的含量減少了,要使污染物的含量不超過初始值的,至少還需過濾的小時數(shù)為()(參考數(shù)據(jù):)A.40 B.38C.44 D.42二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的值為___________.12.某同學在研究函數(shù)時,給出下列結(jié)論:①對任意成立;②函數(shù)的值域是;③若,則一定有;④函數(shù)在上有三個零點.則正確結(jié)論的序號是_______.13.已知函數(shù)=,若對任意的都有成立,則實數(shù)的取值范圍是______14.函數(shù)定義域為____.15.如圖,圓錐的底面圓直徑AB為2,母線長SA為4,若小蟲P從點A開始繞著圓錐表面爬行一圈到SA的中點C,則小蟲爬行的最短距離為________16.將一個高為的圓錐沿其側(cè)面一條母線展開,其側(cè)面展開圖是半圓,則該圓錐的底面半徑為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,1若
,共線,求x的值;2若,求x的值;3當時,求與夾角的余弦值18.如圖,天津之眼,全稱天津永樂橋摩天輪,是世界上唯一一個橋上瞰景摩天輪,是天津的地標之一.永樂橋分上下兩層,上層橋面預(yù)留了一個長方形開口,供摩天輪輪盤穿過,摩天輪的直徑為110米,外掛裝48個透明座艙,在電力的驅(qū)動下逆時針勻速旋轉(zhuǎn),轉(zhuǎn)一圈大約需要30分鐘.現(xiàn)將某一個透明座艙視為摩天輪上的一個點,當點到達最高點時,距離下層橋面的高度為113米,點在最低點處開始計時.(1)試確定在時刻(單位:分鐘)時點距離下層橋面的高度(單位:米);(2)若轉(zhuǎn)動一周內(nèi)某一個摩天輪透明座艙在上下兩層橋面之間的運行時間大約為5分鐘,問上層橋面距離下層橋面的高度約為多少米?19.已知函數(shù).(1)求的定義域;(2)判斷的奇偶性并予以證明;(3)求不等式的解集.20.已知關(guān)于的不等式(Ⅰ)解該不等式;(Ⅱ)定義區(qū)間的長度為,若,求該不等式解集表示的區(qū)間長度的最大值21.已知集合,集合(1)求;(2)設(shè)集合,若,求實數(shù)的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)兩條直線垂直,列方程求解即可.【詳解】由題:直線相互垂直,所以,解得:.故選:D【點睛】此題考查根據(jù)兩條直線垂直,求參數(shù)的取值,關(guān)鍵在于熟練掌握垂直關(guān)系的表達方式,列方程求解.2、C【解析】圓心到直線的距離為,所以,選C.3、A【解析】由已知,先有集合和集合求解出,再根據(jù)集合求解出即可.【詳解】因為,,所以,又因為,所以.故選:A.4、C【解析】根據(jù)對數(shù)函數(shù)值域為R的條件,可知真數(shù)可以取大于0的所有值,因而二次函數(shù)判別式大于0,即可求得k的取值范圍【詳解】因為函數(shù)y=log2(x2-2kx+k)的值域為R所以解不等式得k≤0或k≥1所以選C【點睛】本題考查了對數(shù)函數(shù)的性質(zhì),注意定義域為R與值域為R是不同的解題方法,屬于中檔題5、D【解析】由不等式性質(zhì)依次判斷各個選項即可.【詳解】對于A,若,由可得:,A錯誤;對于B,若,則,此時未必成立,B錯誤;對于C,當時,,C錯誤;對于D,當時,由不等式性質(zhì)知:,D正確.故選:D.6、B【解析】利用誘導公式由求解.【詳解】因為,所以,故選:B7、D【解析】利用線面關(guān)系,面面關(guān)系的性質(zhì)逐一判斷.【詳解】解:對于A選項,,可能異面,故A錯誤;對于B選項,可能有,故B錯誤;對于C選項,,的夾角不一定為90°,故C錯誤;故對D選項,因為,,故,因為,故,故D正確.故選:D.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,是中檔題.8、B【解析】根據(jù)扇形的周長為,面積為,得到,解得l,r,代入公式求解.【詳解】因為扇形的周長為,面積為,所以,解得,所以,所以扇形的圓心角的弧度數(shù)是2故選:B9、B【解析】結(jié)合指數(shù)函數(shù)、對數(shù)函數(shù)的圖象按和分類討論【詳解】對數(shù)函數(shù)定義域是,A錯;C中指數(shù)函數(shù)圖象,則,為減函數(shù),C錯;BD中都有,則,因此為增函數(shù),只有B符合故選:B10、A【解析】由題意,可求解,解不等式即得解【詳解】根據(jù)題設(shè),得,∴,所以;由,得,兩邊取10為底對數(shù),并整理得,∴,因此,至少還需過濾40小時故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、##【解析】根據(jù)給定條件結(jié)合二倍角的正切公式計算作答.【詳解】因,則,所以的值為.故答案為:12、①②③【解析】由奇偶性判斷①,結(jié)合①對,,三種情況討論求值域,判斷②,由單調(diào)性判斷③,由③可知的圖像與函數(shù)的圖像只有兩個交點,進而判斷④,從而得出答案【詳解】①,即,故正確;②當時,,由①可知當時,,當時,,所以函數(shù)的值域是,正確;③當時,,由反比例函數(shù)的單調(diào)性可知,在上是增函數(shù),由①可知在上也是增函數(shù),所以若,則一定有,正確;④由③可知的圖像與函數(shù)的圖像只有兩個交點,故錯誤綜上正確結(jié)論的序號是①②③【點睛】本題考查函數(shù)的基本性質(zhì),包括奇偶性,單調(diào)性,值域等,屬于一般題13、【解析】轉(zhuǎn)化為對任意的都有,再分類討論求出最值,代入解不等式即可得解.【詳解】因為=,所以等價于,等價于,所以對任意的都有成立,等價于,(1)當,即時,在上為減函數(shù),,在上為減函數(shù),,所以,解得,結(jié)合可得.(2)當,即時,在上為減函數(shù),,在上為減函數(shù),在上為增函數(shù),或,所以且,解得.(3)當,即時,,在上為減函數(shù),,在上為增函數(shù),,所以,解得,結(jié)合可知,不合題意.(4)當,即時,在上為減函數(shù),在上為增函數(shù),,在上為增函數(shù),,此時不成立.(5)當時,在上為增函數(shù),,在上為增函數(shù),,所以,解得,結(jié)合可知,不合題意.綜上所述:.故答案為:14、∪【解析】根據(jù)題意列出滿足的條件,解不等式組【詳解】由題意得,即,解得或,從而函數(shù)的定義域為∪.故答案為:∪.15、2.【解析】分析:要求小蟲爬行的最短距離,需將圓錐的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果詳解:由題意知底面圓的直徑AB=2,故底面周長等于2π.設(shè)圓錐的側(cè)面展開后的扇形圓心角為n°,根據(jù)底面周長等于展開后扇形的弧長得2π=,解得n=90,所以展開圖中∠PSC=90°,根據(jù)勾股定理求得PC=2,所以小蟲爬行的最短距離為2.故答案為2點睛:圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長.本題就是把圓錐的側(cè)面展開成扇形,“化曲面為平面”,用勾股定理解決三、16、1【解析】設(shè)該圓錐的底面半徑為r,推導出母線長為2r,再由圓錐的高為,能求出該圓錐的底面半徑【詳解】設(shè)該圓錐的底面半徑為r,將一個高為的圓錐沿其側(cè)面一條母線展開,其側(cè)面展開圖是半圓,,解得,圓錐的高為,,解得故答案為1【點睛】本題考查圓錐的底面半徑的求法,考查圓錐性質(zhì)、圓等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】(1)根據(jù)題意,由向量平行的坐標公式可得,解可得的值,即可得答案;(2)若,則有,利用數(shù)量積的坐標運算列方程,解得的值即可;(3)根據(jù)題意,由的值可得的坐標,由向量的坐標計算公式可得和的值,結(jié)合,計算可得答案【詳解】根據(jù)題意,向量,,若,則有,解可得若,則有,又由向量,,則有,即,解可得.根據(jù)題意,若,則有,,【點睛】本題主要考查兩個向量共線、垂直的性質(zhì),兩個向量坐標形式的運算,兩個向量夾角公式的應(yīng)用,屬于中檔題18、(1)米.(2)米.【解析】(1)如圖,建立平面直角坐標系,以為始邊,為終邊的角為,計算得到答案.(2)根據(jù)對稱性,上層橋面距離下層橋面的高度為點在分鐘時距離下層橋面的高度,計算得到答案.【詳解】(1)如圖,建立平面直角坐標系.由題可知在分鐘內(nèi)所轉(zhuǎn)過的角為,因為點在最低點處開始計時,所以以為始邊,為終邊的角為,所以點的縱坐標為,則(),故在分鐘時點距離下層橋面的高度為(米).(2)根據(jù)對稱性,上層橋面距離下層橋面的高度為點在分鐘時距離下層橋面的高度.當時,故上層橋面距離下層橋面的高度約為米.【點睛】本題考查了三角函數(shù)的應(yīng)用,意在考查學生的應(yīng)用能力.19、(1).(2)見解析;(3)【解析】(1)根據(jù)對數(shù)函數(shù)的定義,列出關(guān)于自變量x的不等式組,求出的定義域;(2)由函數(shù)奇偶性的定義,判定在定義域上的奇偶性;(3)化簡,根據(jù)對數(shù)函數(shù)的單調(diào)性以及定義域,求出不等式>1的解集.試題解析:(1)要使函數(shù)有意義.則,解得.故所求函數(shù)的定義域為(2)由(1)知的定義域為,設(shè),則.且,故為奇函數(shù).(3)因為在定義域內(nèi)是增函數(shù),因為,所以,解得.所以不等式的解集是20、(Ⅰ)當時,原不等式的解為,當或時,原不等式的解集為,當或時,原不等式的解為(Ⅱ)【解析】(Ⅰ)原不等式化為,根據(jù)1<a<2,a=1或a=2分類討論,能求出原不等式的解集;(Ⅱ)當a≠1且a≠2時,,由此能求出該不等式解集表示的區(qū)間長度的最大值試題解析:(Ⅰ)原不等式可化為,當,即時,原不等式的解為;當,即或時,原不等式的解集為;當,即或
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國古代文學在高中教育中的地位及影響研究報告
- 四川電力職業(yè)技術(shù)學院《建筑功能材料》2023-2024學年第一學期期末試卷
- 四川大學錦江學院《旅行社經(jīng)營與管理》2023-2024學年第一學期期末試卷
- 基于AI技術(shù)的游戲設(shè)計創(chuàng)新研究
- 四川財經(jīng)職業(yè)學院《油品化學專業(yè)實驗》2023-2024學年第一學期期末試卷
- 四川財經(jīng)職業(yè)學院《光纖技術(shù)》2023-2024學年第一學期期末試卷
- 商務(wù)改裝項目合同范例
- 購車合同范例修改
- 韓國簽證合同范例
- 紙筒加工合同范例
- 2024年漢口銀行股份有限公司招聘筆試沖刺題(帶答案解析)
- 集成電路高可靠高密度封裝(一期)項目可行性研究報告
- 《韓國的語言》課后答案
- 寵物醫(yī)療創(chuàng)新創(chuàng)業(yè)
- 報價單(產(chǎn)品報價單)
- 項目經(jīng)理及主要管理人員能力水平
- 工程倫理-工程案例分析
- 纜車合唱鋼琴伴奏譜
- 小學四年級上冊數(shù)學集體備課-記錄
- 《國家心力衰竭指南 2023》解讀
- 人才教育培訓部門KPI設(shè)計
評論
0/150
提交評論