版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山西省臨汾市臨汾一中高二數(shù)學第一學期期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數(shù)列等差數(shù)列,a1=1,,則a5=()A. B.C. D.2.我們知道∶用平行于圓錐母線的平面(不過頂點)截圓錐,則平面與圓錐側(cè)面的交線是拋物線一部分,如圖,在底面半徑和高均為2的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點,已知過CD與E的平面與圓錐側(cè)面的交線是以E為頂點的圓錐曲線的一部分,則該圓錐曲線的焦點到其準線的距離等于()A. B.C. D.13.已知,且,則的最大值為()A. B.C. D.4.已知的周長為,頂點、的坐標分別為、,則點的軌跡方程為()A. B.C. D.5.已知直線過點且與直線平行,則直線方程為()A. B.C. D.6.如圖已知正方體,點是對角線上的一點且,,則()A.當時,平面 B.當時,平面C.當為直角三角形時, D.當?shù)拿娣e最小時,7.若在直線上,則直線的一個方向向量為()A. B.C. D.8.如圖,用4種不同的顏色對A,B,C,D四個區(qū)域涂色,要求相鄰的兩個區(qū)域不能用同一種顏色,則不同的涂色方法有()A.24種 B.48種C.72種 D.96種9.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.10.已知雙曲線的兩個焦點為,,是此雙曲線上的一點,且滿足,,則該雙曲線的方程是()A. B.C. D.11.元朝著名的數(shù)學家朱世杰在《四元玉鑒》中有一首詩:“我有一壺酒,攜著游春走.遇店添一倍,逢友飲一斗.”基于此情景,設(shè)計了如圖所示的程序框圖,若輸入的,輸出的,則判斷框中可以填()A. B.C. D.12.如圖,在三棱錐中,點E在上,滿足,點F為的中點,記分別為,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在(0,+∞)內(nèi)有且只有一個零點,則a的值為_____14.已知數(shù)列,點在函數(shù)的圖象上,則數(shù)列的前10項和是______15.已知正方形的邊長為分別是邊的中點,沿將四邊形折起,使二面角的大小為,則兩點間的距離為__________16.曲線在處的切線與坐標軸圍成的三角形面積為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)(1)求在處的切線方程;(2)求在上的最大值與最小值18.(12分)已知在時有極值0.(1)求常數(shù),的值;(2)求在區(qū)間上的最值.19.(12分)已知為各項均為正數(shù)的等比數(shù)列,且,(1)求數(shù)列的通項公式;(2)令,求數(shù)列前n項和20.(12分)已知正三棱柱底面邊長為,是上一點,是以為直角頂點的等腰直角三角形(1)證明:是中點;(2)求點到平面的距離21.(12分)已知單調(diào)遞增的等比數(shù)列滿足:,且是,的等差中項(1)求數(shù)列的通項公式;(2)若,,求22.(10分)2021年國務(wù)院政府工作報告中指出,扎實做好碳達峰、碳中和各項工作,制定2030年前碳排放達峰行動方案,優(yōu)化產(chǎn)業(yè)結(jié)構(gòu)和能源結(jié)構(gòu).汽車行業(yè)是碳排放量比較大的行業(yè)之一,若現(xiàn)對CO2排放量超過130g/km的MI型新車進行懲罰(視為排放量超標),某檢測單位對甲、乙兩類MI型品牌的新車各抽取了5輛進行CO2排放量檢測,記錄如下(單位:g/km):甲80110120140150乙100120xy160經(jīng)測算發(fā)現(xiàn),乙類品牌車CO2排放量的均值為乙=120g/km.(1)求甲類品牌汽車的排放量的平均值及方差;(2)若乙類品牌汽車比甲類品牌汽車CO2的排放量穩(wěn)定性好,求x的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】令、可得等差數(shù)列的首項和第三項,即可求出第五項,從而求出.【詳解】令得,令得,所以數(shù)列的公差為,所以,解得,故選:B.2、C【解析】由圓錐的底面半徑和高及E的位置可得,建立適當?shù)钠矫嬷苯亲鴺讼担傻肅的坐標,設(shè)拋物線的方程,將C的坐標代入求出拋物線的方程,進而可得焦點到其準線的距離【詳解】設(shè)AB,CD的交點為,連接PO,由題意可得PO⊥面AB,所以PO⊥OB,由題意OB=OP=OC=2,因為E是母線PB的中點,所以,由題意建立適當?shù)淖鴺讼?,以BP為y軸以O(shè)E為x軸,E為坐標原點,如圖所示∶可得∶,設(shè)拋物線的方程為y2=mx,將C點坐標代入可得,所以,所以拋物線的方程為∶,所以焦點坐標為,準線方程為,所以焦點到其準線的距離為故選:C3、A【解析】由基本不等式直接求解即可得到結(jié)果.【詳解】由基本不等式知;(當且僅當時取等號),的最大值為.故選:A.4、D【解析】分析可知點的軌跡是除去長軸端點的橢圓,求出、的值,結(jié)合橢圓焦點的位置可得出頂點的軌跡方程.【詳解】由已知可得,,且、、三點不共線,故點的軌跡是以、為焦點,且除去長軸端點的橢圓,由已知可得,得,,則,因此,點的軌跡方程為.故選:D.5、C【解析】由題意,直線的斜率為,利用點斜式即可得答案.【詳解】解:因為直線與直線平行,所以直線的斜率為,又直線過點,所以直線的方程為,即,故選:C.6、D【解析】建立空間直角坐標系,利用空間向量法一一計算可得;【詳解】解:由題可知,如圖令正方體的棱長為1,建立空間直角坐標系,則,,,,,,,所以,因為,所以,所以,,,,設(shè)平面的法向量為,則,令,則,,所以對于A:若平面,則,則,解得,故A錯誤;對于B:若平面,則,即,解得,故B錯誤;當為直角三角形時,有,即,解得或(舍去),故C錯誤;設(shè)到的距離為,則,當?shù)拿娣e最小時,,故正確故選:7、D【解析】由題意可得首先求出直線上的一個向量,即可得到它的一個方向向量,再利用平面向量共線(平行)的坐標表示即可得出答案【詳解】∵在直線上,∴直線的一個方向向量,又∵,∴是直線的一個方向向量故選:D8、B【解析】按涂色順序進行分四步,根據(jù)分步乘法計數(shù)原理可得解.【詳解】按涂色順序進行分四步:涂A部分時,有4種涂法;涂B部分時,有3種涂法;涂C部分時,有2種涂法;涂D部分時,有2種涂法.由分步乘法計數(shù)原理,得不同的涂色方法共有種.故選:B.9、D【解析】設(shè)直線傾斜角為,則,即可求出.【詳解】設(shè)直線的傾斜角為,則,又因為,所以.故選:D.10、A【解析】由,可得進一步求出,由此得到,則該雙曲線的方程可求【詳解】,即,則.即,則該雙曲線的方程是:故選:A【點睛】方法點睛:求圓錐曲線的方程,常用待定系數(shù)法,先定式(根據(jù)已知確定焦點所在的坐標軸,設(shè)出曲線的方程),再定式(根據(jù)已知建立方程組解方程組得解).11、D【解析】根據(jù)程序框圖的算法功能,模擬程序運行即可推理判斷作答.【詳解】由程序框圖知,直到型循環(huán)結(jié)構(gòu),先執(zhí)行循環(huán)體,條件不滿足,繼續(xù)執(zhí)行循環(huán)體,條件滿足跳出循環(huán)體,則有:當?shù)谝淮螆?zhí)行循環(huán)體時,,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;當?shù)诙螆?zhí)行循環(huán)體時,,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;當?shù)谌螆?zhí)行循環(huán)體時,,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;當?shù)谒拇螆?zhí)行循環(huán)體時,,,條件不滿足,繼續(xù)執(zhí)行循環(huán)體;當?shù)谖宕螆?zhí)行循環(huán)體時,,,條件滿足,跳出循環(huán)體,輸出,于是得判斷框中的條件為:,所以判斷框中可以填:.故選:D12、B【解析】利用空間向量加減、數(shù)乘的幾何意義,結(jié)合三棱錐用表示出即可.【詳解】由題設(shè),,,,.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、a=3【解析】對函數(shù)進行求導,分類討論函數(shù)單調(diào)性,根據(jù)單調(diào)性結(jié)合已知可以求出a的值.【詳解】∵函數(shù)在(0,+∞)內(nèi)有且只有一個零點,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①當a≤0時,f′(x)=2x(3x﹣a)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,f(0)=1,f(x)在(0,+∞)上沒有零點,舍去;②當a>0時,f′(x)=2x(3x﹣a)>0的解為x,∴f(x)在(0,)上遞減,在(,+∞)遞增,又f(x)只有一個零點,∴f()1=0,解得a=3故答案為:a=3【點睛】本題考查了利用導數(shù)研究已知函數(shù)的零點求參數(shù)取值問題,考查了分類討論和數(shù)學運算能力.14、【解析】將點代入可得,從而得,再由裂項相消法可求解.【詳解】由題意有,所以,所以數(shù)列的前10項和為:.故答案為:15、.【解析】取BE的中點G,然后證明是二面角的平面角,進而證明,最后通過勾股定理求得答案.【詳解】如圖,取BE的中點G,連接AG,CG,由題意,則是二面角的平面角,則,又,則是正三角形,于是.根據(jù)可得:平面ABE,而平面ABE,所以,而,則平面BCFE,又平面BCFE,于是,,又,所以.故答案為:.16、【解析】先求導數(shù),得出切線斜率,寫出切線方程,然后可求三角形的面積.【詳解】,當時,,所以切線方程為,即;令可得,令可得;所以切線與坐標軸圍成的三角形面積為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),【解析】(1)對函數(shù)求導,然后求出,,運用點斜式即可求出切線方程;(2)利用導數(shù)研究出函數(shù)在區(qū)間的單調(diào)性,即可求出函數(shù)在區(qū)間上的最大值與最小值【小問1詳解】,,,所以在點處的切線方程為,即.【小問2詳解】,因為,所以與同號,令則,由,得,此時為減函數(shù),由,得,此時為增函數(shù),則,故,在單調(diào)遞增,所以,18、(1),;(2)最小值為0,最大值為4.【解析】(1)對求導,根據(jù)在時有極值0,得到,再求出,的值;(2)由(1)知,,然后判斷的單調(diào)性,再求出的值域【詳解】解:(1),由題知:聯(lián)立(1)、(2)有(舍)或.當時在定義域上單調(diào)遞增,故舍去;所以,,經(jīng)檢驗,符合題意(2)當,時,故方程有根或由,得或由得,函數(shù)的單調(diào)增區(qū)間為:,,減區(qū)間為:.函數(shù)在取得極大值,在取極小值;經(jīng)計算,,,,所以最小值為0,最大值為4.19、(1)(2)【解析】(1)利用基本量法,求出首項和公比,即可求解.(2)利用錯位相減法,即可求解.【小問1詳解】設(shè)等比數(shù)列公比為【小問2詳解】20、(1)證明見解析;(2).【解析】(1)證明出平面,可得出,再利用等腰三角形的幾何性質(zhì)可證得結(jié)論成立;(2)計算出三棱錐的體積以及的面積,利用等體積法可求得點到平面的距離.【小問1詳解】證明:在正三棱柱,平面,平面,則,因為是以為直角頂點的等腰直角三角形,則,,則平面,平面,所以,,因為為等邊三角形,故點為的中點.【小問2詳解】解:因為是邊長為的等邊三角形,則,平面,平面,則,即,所以,,,,設(shè)點到平面的距離為,,,解得.因此,點到平面距離為.21、(1);(2)【解析】(1)將已知條件整理變形為等比數(shù)列的首項和公比來表示,解方程組得到基本量,可得到通項公式(2)化簡通項得,根據(jù)特點求和時采用錯位相減法求解試題解析:(1)設(shè)等比數(shù)列的首項為,公比為,依題意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又單調(diào)遞增,∴="2,"=2,∴=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國學校家具行業(yè)發(fā)展現(xiàn)狀及前景規(guī)劃研究報告
- 2024-2030年中國嬰兒洗護用品市場運行動態(tài)及前景趨勢預測報告
- 2024-2030年中國女性洗液行業(yè)市場營銷模式及發(fā)展前景預測報告
- 2024-2030年中國多型腔熱流道管坯模具境外融資報告
- 2024年標準簡易個人魚塘承包合同模板版B版
- 梅河口康美職業(yè)技術(shù)學院《高級語言程序?qū)嵺`》2023-2024學年第一學期期末試卷
- 茂名職業(yè)技術(shù)學院《語文教學設(shè)計與實施》2023-2024學年第一學期期末試卷
- 微專題定量測定型實驗突破策略-2024高考化學一輪考點擊破
- 呂梁職業(yè)技術(shù)學院《生物學科專業(yè)導論》2023-2024學年第一學期期末試卷
- 2024年某科技公司與某航空公司關(guān)于機載娛樂系統(tǒng)的合同
- 德邦物流-第三方物流服務(wù)
- 混凝土冬季施工保溫保濕措施
- 心電監(jiān)護技術(shù)
- 2024年華潤電力投資有限公司招聘筆試參考題庫含答案解析
- 壟斷行為的定義與判斷準則
- 模具開發(fā)FMEA失效模式分析
- 聶榮臻將軍:中國人民解放軍的奠基人之一
- 材料化學專業(yè)大學生職業(yè)生涯規(guī)劃書
- 乳品加工工(中級)理論考試復習題庫(含答案)
- 《教材循環(huán)利用》課件
- 學生思想政治工作工作證明材料
評論
0/150
提交評論