版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省肥東縣圣泉中學高三數(shù)學第一學期期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.2.已知函數(shù),則在上不單調的一個充分不必要條件可以是()A. B. C.或 D.3.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區(qū)進行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.54.已知復數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.6.函數(shù)在上單調遞減的充要條件是()A. B. C. D.7.定義在R上的函數(shù)滿足,為的導函數(shù),已知的圖象如圖所示,若兩個正數(shù)滿足,的取值范圍是()A. B. C. D.8.是虛數(shù)單位,復數(shù)在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.10.已知函數(shù),若,且,則的取值范圍為()A. B. C. D.11.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.12.已知復數(shù)是純虛數(shù),其中是實數(shù),則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)為偶函數(shù),則_____.14.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克,原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗原料都不超過12千克.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是__________元.15.已知的展開式中第項與第項的二項式系數(shù)相等,則__________.16.如圖,己知半圓的直徑,點是弦(包含端點,)上的動點,點在弧上.若是等邊三角形,且滿足,則的最小值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)把曲線向下平移個單位,然后各點橫坐標變?yōu)樵瓉淼谋兜玫角€(縱坐標不變),設點是曲線上的一個動點,求它到直線的距離的最小值.18.(12分)設橢圓的離心率為,圓與軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為.(1)求橢圓的方程;(2)設圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.19.(12分)已知函數(shù)(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.20.(12分)在平面直角坐標系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點.圓心不在y軸上的圓M與直線l,PF,x軸都相切,設M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當線段AB的長度最小時,求s的值.21.(12分)已知函數(shù).(1)求函數(shù)的單調區(qū)間;(2)當時,如果方程有兩個不等實根,求實數(shù)t的取值范圍,并證明.22.(10分)近年來,隨著“霧霾”天出現(xiàn)的越來越頻繁,很多人為了自己的健康,外出時選擇戴口罩,在一項對人們霧霾天外出時是否戴口罩的調查中,共調查了人,其中女性人,男性人,并根據(jù)統(tǒng)計數(shù)據(jù)畫出等高條形圖如圖所示:(1)利用圖形判斷性別與霧霾天外出戴口罩是否有關系并說明理由;(2)根據(jù)統(tǒng)計數(shù)據(jù)建立一個列聯(lián)表;(3)能否在犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩的關系.附:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據(jù)列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經(jīng)過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質,考查運算求解能力,屬于中檔題.2、D【解析】
先求函數(shù)在上不單調的充要條件,即在上有解,即可得出結論.【詳解】,若在上不單調,令,則函數(shù)對稱軸方程為在區(qū)間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數(shù)的函數(shù)的單調性及充分不必要條件,要注意二次函數(shù)零點的求法,屬于中檔題.3、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(?。?;A(甲,乙)B(?。〤(丙);A(甲,丙)B(丁)C(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.4、C【解析】分析:根據(jù)復數(shù)的運算,求得復數(shù)z,再利用復數(shù)的表示,即可得到復數(shù)對應的點,得到答案.詳解:由題意,復數(shù)z=2i1-i所以復數(shù)z在復平面內對應的點的坐標為(-1,-1),位于復平面內的第三象限,故選C.點睛:本題主要考查了復數(shù)的四則運算及復數(shù)的表示,其中根據(jù)復數(shù)的四則運算求解復數(shù)z是解答的關鍵,著重考查了推理與運算能力.5、D【解析】
根據(jù)點差法得,再根據(jù)焦點坐標得,解方程組得,,即得結果.【詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.6、C【解析】
先求導函數(shù),函數(shù)在上單調遞減則恒成立,對導函數(shù)不等式換元成二次函數(shù),結合二次函數(shù)的性質和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結合圖象可知,,解得故.故選:C.【點睛】本題考查求三角函數(shù)單調區(qū)間.求三角函數(shù)單調區(qū)間的兩種方法:(1)代換法:就是將比較復雜的三角函數(shù)含自變量的代數(shù)式整體當作一個角(或),利用基本三角函數(shù)的單調性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結合圖象求它的單調區(qū)間.7、C【解析】
先從函數(shù)單調性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點睛】本題考查了函數(shù)單調性和不等式的基礎知識,屬于中檔題.8、D【解析】
求出復數(shù)在復平面內對應的點的坐標,即可得出結論.【詳解】復數(shù)在復平面上對應的點的坐標為,該點位于第四象限.故選:D.【點睛】本題考查復數(shù)對應的點的位置的判斷,屬于基礎題.9、D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關系式.10、A【解析】分析:作出函數(shù)的圖象,利用消元法轉化為關于的函數(shù),構造函數(shù)求得函數(shù)的導數(shù),利用導數(shù)研究函數(shù)的單調性與最值,即可得到結論.詳解:作出函數(shù)的圖象,如圖所示,若,且,則當時,得,即,則滿足,則,即,則,設,則,當,解得,當,解得,當時,函數(shù)取得最小值,當時,;當時,,所以,即的取值范圍是,故選A.點睛:本題主要考查了分段函數(shù)的應用,構造新函數(shù),求解新函數(shù)的導數(shù),利用導數(shù)研究新函數(shù)的單調性和最值是解答本題的關鍵,著重考查了轉化與化歸的數(shù)學思想方法,以及分析問題和解答問題的能力,試題有一定的難度,屬于中檔試題.11、D【解析】
依次將選項中的代入,結合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當時,在上不單調,故A不正確;當時,在上單調遞減,故B不正確;當時,在上不單調,故C不正確;當時,在上單調遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數(shù)的單調性,涉及到誘導公式的應用,是一道容易題.12、A【解析】
對復數(shù)進行化簡,由于為純虛數(shù),則化簡后的復數(shù)形式中,實部為0,得到的值,從而得到復數(shù).【詳解】因為為純虛數(shù),所以,得所以.故選A項【點睛】本題考查復數(shù)的四則運算,純虛數(shù)的概念,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)偶函數(shù)的定義列方程,化簡求得的值.【詳解】由于為偶函數(shù),所以,即,即,即,即,即,即,即,所以.故答案為:【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù),考查運算求解能力,屬于中檔題.14、1元【解析】設分別生產(chǎn)甲乙兩種產(chǎn)品為桶,桶,利潤為元
則根據(jù)題意可得目標函數(shù),作出可行域,如圖所示作直線然后把直線向可行域平移,
由圖象知當直線經(jīng)過時,目標函數(shù)的截距最大,此時最大,
由可得,即此時最大,
即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤,最大利潤為1.【點睛】本題考查用線性規(guī)劃知識求利潤的最大值,根據(jù)條件建立不等式關系,以及利用線性規(guī)劃的知識進行求解是解決本題的關鍵.15、【解析】
根據(jù)的展開式中第項與第項的二項式系數(shù)相等,得到,再利用組合數(shù)公式求解.【詳解】因為的展開式中第項與第項的二項式系數(shù)相等,所以,即,所以,即,解得.故答案為:10【點睛】本題主要考查二項式的系數(shù),還考查了運算求解的能力,屬于基礎題.16、1【解析】
建系,設,表示出點坐標,則,根據(jù)的范圍得出答案.【詳解】解:以為原點建立平面坐標系如圖所示:則,,,,設,則,,,,,,,顯然當取得最大值4時,取得最小值1.故答案為:1.【點睛】本題考查了平面向量的數(shù)量積運算,坐標運算,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以得,進而可化簡得出曲線的直角坐標方程;(2)根據(jù)變換得出的普通方程為,可設點的坐標為,利用點到直線的距離公式結合正弦函數(shù)的有界性可得出結果.【詳解】(1)由(為參數(shù)),得,化簡得,故直線的普通方程為.由,得,又,,.所以的直角坐標方程為;(2)由(1)得曲線的直角坐標方程為,向下平移個單位得到,縱坐標不變,橫坐標變?yōu)樵瓉淼谋兜玫角€的方程為,所以曲線的參數(shù)方程為(為參數(shù)).故點到直線的距離為,當時,最小為.【點睛】本題考查曲線的參數(shù)方程、極坐標方程與普通方程的相互轉化,同時也考查了利用橢圓的參數(shù)方程解決點到直線的距離最值的求解,考查計算能力,屬于中等題.18、(1);(2)見解析.【解析】
(I)結合離心率,得到a,b,c的關系,計算A的坐標,計算切線與橢圓交點坐標,代入橢圓方程,計算參數(shù),即可.(II)分切線斜率存在與不存在討論,設出M,N的坐標,設出切線方程,結合圓心到切線距離公式,得到m,k的關系式,將直線方程代入橢圓方程,利用根與系數(shù)關系,表示,結合三角形相似,證明結論,即可.【詳解】(Ⅰ)設橢圓的半焦距為,由橢圓的離心率為知,,∴橢圓的方程可設為.易求得,∴點在橢圓上,∴,解得,∴橢圓的方程為.(Ⅱ)當過點且與圓相切的切線斜率不存在時,不妨設切線方程為,由(Ⅰ)知,,,∴.當過點且與圓相切的切線斜率存在時,可設切線的方程為,,∴,即.聯(lián)立直線和橢圓的方程得,∴,得.∵,∴,,∴.綜上所述,圓上任意一點處的切線交橢圓于點,都有.在中,由與相似得,為定值.【點睛】本道題考查了橢圓方程的求解,考查了直線與橢圓位置關系,考查了向量的坐標運算,難度偏難.19、(1)(2)32【解析】
利用絕對值不等式的解法求出不等式的解集,得到關于的方程,求出的值即可;由知可得,,利用三個正數(shù)的基本不等式,構造和是定值即可求出的最大值.【詳解】(1)∵,,所以不等式的解集為,即為不等式的解集為,∴的解集為,即不等式的解集為,化簡可得,不等式的解集為,所以,即.(2)∵,∴.又∵,,,∴,當且僅當,等號成立,即,,時,等號成立,∴的最大值為32.【點睛】本題主要考查含有兩個絕對值不等式的解法和三個正數(shù)的基本不等式的靈活運用;其中利用構造出和為定值即為定值是求解本題的關鍵;基本不等式取最值的條件:一正二定三相等是本題的易錯點;屬于中檔題.20、(1),(2).【解析】
根據(jù)題意設,可得PF的方程,根據(jù)距離即可求出;點Q處的切線的斜率存在,由對稱性不妨設,根據(jù)導數(shù)的幾何意義和斜率公式,求,并構造函數(shù),利用導數(shù)求出函數(shù)的最值.【詳解】因為拋物線C的方程為,所以F的坐標為,設,因為圓M與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點,則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設,,,由知,點Q處的切線的斜率存在,由對稱性不妨設,由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調遞減,在單調遞增,所以當時,取得極小值也是最小值,即AB取得最小值此時.【點睛】本題考查了直線和拋物線的位置關系,以及利用導數(shù)求函數(shù)最值的關系,考查了運算能力和轉化能力,屬于難題.21、(1)當時,的單調遞增區(qū)間是,單調遞減區(qū)間是;當時,的單調遞增區(qū)間是,單調遞減區(qū)間是;(2),證明見解析.【解析】
(1)求出,對分類討論,分別求出的解,即可得出結論;(2)由(1)得出有兩解時的范圍,以及關系,將,等價轉化為證明,不妨設,令,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 牛羊零售商店購銷合同
- 建筑垃圾處理棄土堆放合同
- 茶樓裝修合同
- 標準合同復工協(xié)議
- 借款合同中的擔保方式選擇與分析
- 物流資源共享合作合同
- 銀行環(huán)境清潔責任合同
- 租賃服務合同簽訂應注意的法律問題
- 購房合同簽訂流程詳解
- 國際供應鏈合同
- 2024年02月天津市口腔醫(yī)院派遣制人員招考聘用40人筆試歷年(2016-2023年)真題薈萃帶答案解析
- 聲明書:個人婚姻狀況聲明
- 幼兒園年檢整改專項方案
- 新管徑流速流量對照表
- 20以內退位減法口算練習題100題30套(共3000題)
- 咯血病人做介入手術后的護理
- 境外投資環(huán)境分析報告
- 便攜式氣體檢測儀使用方法課件
- 《壓力平衡式旋塞閥》課件
- 信貸支持生豬養(yǎng)殖行業(yè)報告
- 物聯(lián)網(wǎng)與人工智能技術融合發(fā)展年度報告
評論
0/150
提交評論