版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆云南省曲靖市宣威三中高二上數(shù)學(xué)期末經(jīng)典模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某地為應(yīng)對極端天氣搶險(xiǎn)救災(zāi),需調(diào)用A,B兩種卡車,其中A型卡車x輛,B型卡車y輛,以備不時(shí)之需,若x和y滿足約束條件則最多需調(diào)用卡車的數(shù)量為()A.7 B.9C.13 D.142.若直線與雙曲線相交,則的取值范圍是A. B.C. D.3.如圖,函數(shù)的圖象在P點(diǎn)處的切線方程是,若點(diǎn)的橫坐標(biāo)是5,則()A. B.1C.2 D.04.已知橢圓方程為,則該橢圓的焦距為()A.1 B.2C. D.5.命題“,則”及其逆命題、否命題和逆否命題這四個命題中,真命題的個數(shù)為()A.0 B.2C.3 D.46.拋物線的準(zhǔn)線方程是,則a的值為()A.4 B.C. D.7.已知命題p:“是方程表示橢圓”的充要條件;命題q:“是a,b,c成等比數(shù)列”的必要不充分條件,則下列命題為真命題的是()A. B.C. D.8.如圖,在平行六面體中,底面是邊長為的正方形,若,且,則的長為()A. B.C. D.9.已知M、N為橢圓上關(guān)于短軸對稱的兩點(diǎn),A、B分別為橢圓的上下頂點(diǎn),設(shè)、分別為直線的斜率,則的最小值為()A. B.C. D.10.《萊茵德紙草書》(RhindPapyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有這樣一道題目:把93個面包分給5個人,使每個人所得面包個數(shù)成等比數(shù)列,且使較小的兩份之和等于中間一份的四分之三,則最大的一份是()個A.12 B.24C.36 D.4811.已知拋物線的焦點(diǎn)為F,且點(diǎn)F與圓上點(diǎn)的距離的最大值為6,則拋物線的準(zhǔn)線方程為()A. B.C. D.12.(文科)已知點(diǎn)為曲線上的動點(diǎn),為圓上的動點(diǎn),則的最小值是A.3 B.5C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線被圓所截得的弦長為2,則雙曲線的離心率為___________.14.過拋物線:的焦點(diǎn)的直線交于,兩點(diǎn),若,則線段中點(diǎn)的橫坐標(biāo)為______15.已知雙曲線的兩條漸近線的夾角為,則_______16.將連續(xù)的正整數(shù)填入n行n列的方陣中,使得每行、每列、每條對角線上的數(shù)之和相等,可得到n階幻方.記n階幻方每條對角線上的數(shù)之和為,如圖:,那么的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,從參加環(huán)保知識競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:(1)[79.5,89.5)這一組的頻數(shù)、頻率分別是多少?(2)估計(jì)這次環(huán)保知識競賽的眾數(shù)、中位數(shù)、平均數(shù)是多少?18.(12分)如圖,在多面體ABCEF中,和均為等邊三角形,D是AC的中點(diǎn),(1)證明:(2)若平面平面ACE,求二面角余弦值.19.(12分)在平面直角坐標(biāo)系中,圓C:,直線l:(1)若直線l與圓C相切于點(diǎn)N,求切點(diǎn)N的坐標(biāo);(2)若,直線l上有且僅有一點(diǎn)A滿足:過點(diǎn)A作圓C的兩條切線AP、AQ,切點(diǎn)分別為P,Q,且使得四邊形APCQ為正方形,求m的值20.(12分)如圖,在三棱柱中,面ABC,,,D為BC的中點(diǎn)(1)求證:平面;(2)若F為中點(diǎn),求與平面所成角的正弦值21.(12分)已知為直角梯形,,平面,,.(1)求證:平面;(2)求平面與平面所成銳二面角的余弦值.22.(10分)如圖,在四棱錐中,底面為直角梯形,平面平面,,.(1)證明:平面;(2)已知,,,且直線與平面所成角的正弦值為,求平面與平面夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義即可求解【詳解】設(shè)調(diào)用卡車的數(shù)量為z,則,其中x和y滿足約束條件,作出可行域如圖所示:當(dāng)目標(biāo)函數(shù)經(jīng)過時(shí),縱截距最大,最大.故選:B2、C【解析】聯(lián)立直線和雙曲線的方程得到,即得的取值范圍.【詳解】聯(lián)立直線和雙曲線的方程得當(dāng),即時(shí),直線和雙曲線的漸近線重合,所以直線與雙曲線沒有公共點(diǎn).當(dāng),即時(shí),,解之得.故選:C.【點(diǎn)睛】本題主要考查直線和雙曲線的位置關(guān)系,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.3、C【解析】函數(shù)的圖象在點(diǎn)P處的切線方程是,所以,在P處的導(dǎo)數(shù)值為切線的斜率,2,故選C考點(diǎn):本題主要考查導(dǎo)數(shù)的幾何意義點(diǎn)評:簡單題,切線的斜率等于函數(shù)在切點(diǎn)的導(dǎo)函數(shù)值4、B【解析】根據(jù)橢圓中之間的關(guān)系,結(jié)合橢圓焦距的定義進(jìn)行求解即可.【詳解】由橢圓的標(biāo)準(zhǔn)方程可知:,則焦距為,故選:B.5、D【解析】首先判斷原命題的真假,寫出其逆命題,即可判斷其真假,再根據(jù)互為逆否命題的兩個命題同真假,即可判斷;【詳解】解:因?yàn)槊}“,則”為真命題,所以其逆否命題也為真命題;其逆命題為:則,顯然也為真命題,故其否命題也為真命題;故命題“,則”及其逆命題、否命題和逆否命題這四個命題中,真命題有4個;故選:D6、C【解析】先求得拋物線的標(biāo)準(zhǔn)方程,可得其準(zhǔn)線方程,根據(jù)題意,列出方程,即可得答案.【詳解】由題意得拋物線的標(biāo)準(zhǔn)方程為,準(zhǔn)線方程為,又準(zhǔn)線方程是,所以,所以.故選:C7、C【解析】先判斷命題p,q的真假,從而判斷的真假,再根據(jù)“或”“且”命題的真假判斷方法,可得答案.【詳解】當(dāng)時(shí),表示圓,故命題p:“是方程表示橢圓”的充要條件是假命題,命題q:“是a,b,c成等比數(shù)列”的必要不充分條件為真命題,則是真命題,是假命題,故是假命題,是假命題,是真命題,是假命題,故選:C8、D【解析】由向量線性運(yùn)算得,利用數(shù)量積的定義和運(yùn)算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.9、A【解析】利用為定值即可獲解.【詳解】設(shè)則又,所以所以當(dāng)且僅當(dāng),即,取等故選:A10、D【解析】設(shè)等比數(shù)列的首項(xiàng)為,公比,根據(jù)題意,由求解.【詳解】設(shè)等比數(shù)列的首項(xiàng)為,公比,由題意得:,即,解得,所以,故選:D11、D【解析】先求得拋物線的焦點(diǎn)坐標(biāo),再根據(jù)點(diǎn)F與圓上點(diǎn)的距離的最大值為6求解.【詳解】因?yàn)閽佄锞€的焦點(diǎn)為F,且點(diǎn)F與圓上點(diǎn)的距離的最大值為6,所以,解得,所以拋物線準(zhǔn)線方程為,故選:D12、A【解析】數(shù)形結(jié)合分析可得,當(dāng)時(shí)能夠取得的最小值,根據(jù)點(diǎn)到圓心的距離減去半徑求解即可.【詳解】由對勾函數(shù)的性質(zhì),可知,當(dāng)且僅當(dāng)時(shí)取等號,結(jié)合圖象可知當(dāng)A點(diǎn)運(yùn)動到時(shí)能使點(diǎn)到圓心的距離最小,最小為4,從而的最小值為.故選:A【點(diǎn)睛】本題考查兩動點(diǎn)間距離的最值問題,考查轉(zhuǎn)化思想與數(shù)形結(jié)合思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、或2【解析】由圓的方程有圓心,半徑為,討論雙曲線的焦點(diǎn)分別在x或y軸上對應(yīng)的漸近線方程,根據(jù)已知及弦長與半徑、弦心距的幾何關(guān)系得到雙曲線參數(shù)的齊次方程,即可求離心率.【詳解】由題設(shè),圓的標(biāo)準(zhǔn)方程為,即圓心,半徑為,若雙曲線為時(shí),漸近線為且,所以圓心到雙曲線漸近線的距離為,由弦長、弦心距、半徑的關(guān)系知:,故,得:,又,所以,故.若雙曲線為時(shí),漸近線為且,所以圓心到雙曲線漸近線的距離為,由弦長、弦心距、半徑的關(guān)系知:,故,得:,又,所以,故.綜上,雙曲線的離心率為或2.故答案為:或2.14、【解析】根據(jù)題意,作出拋物線的簡圖,求出拋物線的焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程,分析可得為直角梯形中位線,由拋物線的定義分析可得答案【詳解】如圖,拋物線的焦點(diǎn)為,準(zhǔn)線為,分別過,作準(zhǔn)線的垂線,垂足為,,則有過的中點(diǎn)作準(zhǔn)線的垂線,垂足為,則為直角梯形中位線,則,即,解得.所以的橫坐標(biāo)為故答案為:15、或【解析】首先判斷漸近線的傾斜角,再求的值.【詳解】由條件可知雙曲線的其中一條漸近線方程是,因?yàn)閮蓷l漸近線的夾角是,所以直線的傾斜角是或,即或.故答案為:或16、34【解析】根據(jù)每行數(shù)字之和相等,四行數(shù)字之和剛好等于1到16之和可得.【詳解】4階幻方中,4行數(shù)字之和,得.故答案為:34三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0.25,15;(2)眾數(shù)為74.5,中位數(shù)為72.8,平均分為70.5.【解析】(1)直接利用頻率和頻數(shù)公式求解;(2)利用頻率分布直方圖的公式求眾數(shù)、中位數(shù)、平均數(shù).【詳解】(1)頻率=(89.5-79.5)×0.025=0.25;頻數(shù)=60×0.25=15.(2)[69.5,79.5)一組的頻率最大,人數(shù)最多,則眾數(shù)為74.5,左邊三個矩形的面積和為0.4,左邊四個矩形的面積和為0.7,所以中位數(shù)在第4個矩形中,設(shè)中位數(shù)為,所以中位數(shù)為72.8.平均分為44.5×0.1+54.5×0.15+64.5×0.15+74.5×0.3+84.5×0.25+94.5×0.05=70.518、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到、,即可得到平面,再根據(jù),即可得證;(2)由面面垂直的性質(zhì)得到平面,建立如圖所示空間直角坐標(biāo)系,設(shè),即可得到點(diǎn),,的坐標(biāo),最后利用空間向量法求出二面角的余弦值;【小問1詳解】證明:連接DE因?yàn)椋褼為AC的中點(diǎn),所以因?yàn)椋褼為AC的中點(diǎn),所以因?yàn)槠矫鍮DE,平面BDE,且,所以平面因?yàn)?,所以平面BDE,所以【小問2詳解】解:由(1)可知因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,所以DC,DB,DE兩兩垂直以D為原點(diǎn),分別以,,的方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系設(shè).則,,.從而,設(shè)平面BCE的法向量為,則令,得平面ABC的一個法向量為設(shè)二面角為,由圖可知為銳角,則19、(1)或(2)3.【解析】(1)設(shè)切點(diǎn)坐標(biāo),由切點(diǎn)和圓心連線與切線垂直以及切點(diǎn)在圓上建立關(guān)系式,求解切點(diǎn)坐標(biāo)即可;(2)由圓的方程可得圓心坐標(biāo)及半徑,由APCQ為正方形,可得|AC|=可得圓心到直線的距離為,可得m的值【小問1詳解】解:設(shè)切點(diǎn)為,則有,解得:或x0=-2+1y0=-2,所以切點(diǎn)的坐標(biāo)為或【小問2詳解】解:圓C:的圓心(1,0),半徑r=2,設(shè),由題意可得,由四邊形APCQ為正方形,可得|AC|=,即,由題意直線l⊥AC,圓C:(x﹣1)2+y2=4,則圓心(1,0)到直線的距離,可得,m>0,解得m=3.20、(1)證明見解析(2)【解析】(1)連接交于點(diǎn)O,連接OD,通過三角形中位線證明即可;(2)建立空間直角坐標(biāo)系,利用向量法求解即可.【小問1詳解】解法1:如圖,連接交于點(diǎn)O,連接OD,因?yàn)樵谌庵校倪呅问瞧叫兴倪呅危設(shè)是的中點(diǎn),因?yàn)镈為BC的中點(diǎn),所以在中,,因?yàn)槠矫?,平面,所以平面平面解?:因?yàn)樵谌庵校鍭BC,,所以BA,BC,兩兩垂直,故以B點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的空間直角坐標(biāo)系,因?yàn)?,所以B(0,0,0),A(2,0,0),D(0,1,0),,,所以,,,設(shè)平面的一個法向量為,則,即,令,則,∴,平面,所以平面;【小問2詳解】設(shè)與平面所成角為,由(1)知平面法向量為,F(xiàn)為中點(diǎn),∴,,∴即與平面所成角正弦值為.21、(1)證明見解析;(2).【解析】建立空間直角坐標(biāo)系.(1)方法一,利用向量的方法,通過計(jì)算,,證得,,由此證得平面.方法二,利用幾何法,通過平面證得,結(jié)合證得,由此證得平面.(2)通過平面和平面的法向量,計(jì)算出平面與平面所成銳二面角的余弦值.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,可得,,,.(1)證明法一:因?yàn)椋?,,所以,,所以,,,平面,平面,所以平?證明法二:因?yàn)槠矫?,平面,所以,又因?yàn)?,即,,平面,平面,所以平?(2)由(1)知平面的一個法向量,設(shè)平面的法向量,又,,且所以所以平面的一個法向量為,所以,所以平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.22、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度鏟車租賃市場推廣合作合同3篇
- 2025年度食品安全管理體系認(rèn)證合同要求3篇
- 2024版融資租賃合同書模板
- 2025年度廚師職業(yè)保險(xiǎn)與福利保障服務(wù)合同3篇
- 二零二五版承臺施工節(jié)能減排合同2篇
- 二零二五版代收款與房地產(chǎn)銷售合同3篇
- 2025版綠化工程設(shè)計(jì)變更與施工管理合同4篇
- 二零二五年度網(wǎng)絡(luò)安全培訓(xùn)合同及技能提升方案3篇
- 2025版房地產(chǎn)租賃合同附家具及裝修改造條款3篇
- 二零二五版電商企業(yè)9%股權(quán)轉(zhuǎn)讓及增值服務(wù)合同3篇
- 《呼吸衰竭的治療》
- 有余數(shù)的除法算式300題
- 2024年度醫(yī)患溝通課件
- 2024年中考政治總復(fù)習(xí)初中道德與法治知識點(diǎn)總結(jié)(重點(diǎn)標(biāo)記版)
- 2024年手術(shù)室的應(yīng)急預(yù)案
- 五年級上冊小數(shù)除法豎式計(jì)算練習(xí)300題及答案
- 【外資便利店在我國的經(jīng)營策略分析案例:以日本羅森便利店為例11000字(論文)】
- 6061鋁合金退火工藝
- 教師職業(yè)素養(yǎng)與職業(yè)發(fā)展規(guī)劃
- 語言規(guī)劃講義
- Talent5五大職業(yè)性格測試技巧138答案
評論
0/150
提交評論