版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東高明一中2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列說法正確的個數(shù)有()(ⅰ)命題“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個 B.2個C.3個 D.4個2.下列說法中正確的是()A.命題“若,則”的否命題是真命題;B.若為真命題,則為真命題;C.“”是“”的充分條件;D.若命題:“,”,則:“,”3.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),且,當時,,則不等式的解集為()A. B.C. D.4.已知是拋物線上的一點,是拋物線的焦點,若以為始邊,為終邊的角,則等于()A. B.C. D.5.已知向量,且,則()A. B.C. D.6.已知,若與的展開式中的常數(shù)項相等,則()A.1 B.3C.6 D.97.已知直線,當變化時,所有直線都恒過點()A.B.C.D.8.若方程表示圓,則實數(shù)的取值范圍為()A. B.C. D.9.函數(shù)的單調(diào)增區(qū)間為()A. B.C. D.10.若實數(shù),滿足約束條件,則的最小值為()A.-3 B.-2C. D.111.已知橢圓方程為,則該橢圓的焦距為()A.1 B.2C. D.12.在區(qū)間內(nèi)隨機取一個數(shù)x,則使得的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列{an}的前n項和Sn=n2+n,則an=_____14.某人有樓房一棟,室內(nèi)面積共計,擬分割成兩類房間作為旅游客房,大房間每間面積為,可住游客4名,每名游客每天的住宿費100元;小房間每間面積為,可住游客2名,每名游客每天的住宿費150元;裝修大房間每間需要3萬元,裝修小房間每間需要2萬元.如果他只能籌款25萬元用于裝修,且假定游客能住滿客房,則該人一天能獲得的住宿費的最大值為___________元.15.已知直線與直線垂直,則實數(shù)的值為___________.16.圓心為直線與直線的交點,且過原點的圓的標準方程是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,圓O以原點為圓心,且經(jīng)過點.(1)求圓O的方程;(2)若直線與圓O交于兩點A,B,求弦長.18.(12分)已知(1)若函數(shù)在上有極值,求實數(shù)a的取值范圍;(2)已知方程有兩個不等實根,證明:(注:是自然對數(shù)的底數(shù))19.(12分)已知拋物線C:,直線l經(jīng)過點,且與拋物線C交于M,N兩點,其中.(1)若,且,求點M的坐標;(2)是否存在正數(shù)m,使得以MN為直徑的圓經(jīng)過坐標原點O,若存在,請求出正數(shù)m,若不存在,請說明理由.20.(12分)如圖,在直三棱柱中,,,,,分別為,的中點(1)求證:;(2)求直線與平面所成角的正弦值21.(12分)已知在△ABC中,角A,B,C的對邊分別為a,b,c,且(1)求C;(2)若,求的最大值22.(10分)如圖,在四棱錐中,底面ABCD,,,,(1)證明:;(2)當PB的長為何值時,直線AB與平面PCD所成角的正弦值為?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)四種命題的結(jié)構(gòu)特征可判斷(?。áぃ┑恼`,根據(jù)全稱命題的否定形式可判斷(ⅱ)的正誤,根據(jù)判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(ⅰ)錯誤.“,”的否定為“,使得”,故(ⅱ)正確,當時,,故有實根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯誤.故選:B2、C【解析】A.寫出原命題的否命題,即可判斷其正誤;B.根據(jù)為真命題可知的p,q真假情況,由此判斷的真假;C.看命題“”能否推出“”,即可判斷;D.根據(jù)含有一個量詞的命題的否定的要求,即可判斷該命題的正誤.【詳解】A.命題“若x=y,則sinx=siny”,其否命題為若“,則”為假命題,因此A不正確;B.命題“”為真命題,則p,q中至少有一個為真命題,當二者為一真一假時,為假命題,故B不正確C.命題“若,則”為真命題,故C正確;D.命題:“,”,為特稱命題,其命題的否定:“,”,故D錯誤,故選:C3、D【解析】設(shè),則,分析可得為偶函數(shù)且,求出的導(dǎo)數(shù),分析可得在上為減函數(shù),進而分析可得上,,在上,,結(jié)合函數(shù)的奇偶性可得上,,在上,,又由即,則有或,據(jù)此分析可得答案【詳解】根據(jù)題意,設(shè),則,若奇函數(shù),則,則有,即函數(shù)為偶函數(shù),又由,則,則,,又由當時,,則在上為減函數(shù),又由,則在上,,在上,,又由為偶函數(shù),則在上,,在上,,即,則有或,故或,即不等式的解集為;故選:D4、D【解析】設(shè)點,取,可得,求出的值,利用拋物線的定義可求得的值.【詳解】設(shè)點,其中,則,,取,則,可得,因為,可得,解得,則,因此,.故選:D.5、A【解析】利用空間向量共線的坐標表示即可求解.【詳解】由題意可得,解得,所以.故選:A6、B【解析】根據(jù)二項展開式的通項公式即可求出【詳解】的展開式中的常數(shù)項為,而的展開式中的常數(shù)項為,所以,又,所以故選:B7、D【解析】將直線方程整理為,從而可得直線所過的定點.【詳解】可化為,∴直線過定點,故選:D.8、D【解析】將方程化為標準式即可.【詳解】方程化為標準式得,則.故選:D.9、D【解析】先求定義域,再求導(dǎo)數(shù),令解不等式,即可.【詳解】函數(shù)的定義域為令,解得故選:D【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.10、B【解析】先畫出可行域,由,作出直線向下平移過點A時,取得最小值,然后求出點A的坐標,代入目標函數(shù)中可求得答案【詳解】由題可得其可行域為如圖,l:,當經(jīng)過點A時,取到最小值,由,得,即,所以的最小值為故選:B11、B【解析】根據(jù)橢圓中之間的關(guān)系,結(jié)合橢圓焦距的定義進行求解即可.【詳解】由橢圓的標準方程可知:,則焦距為,故選:B.12、A【解析】解一元一次不等式求不等式在上解集,再利用幾何概型的長度模型求概率即可.【詳解】由,可得,其中長度為1,而區(qū)間長度為4,所以,所求概率為故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、2n【解析】根據(jù)數(shù)列的通項與前n項和的關(guān)系求解即可.【詳解】由題,當時,,當時.當時也滿足.故.故答案為:【點睛】本題主要考查了根據(jù)數(shù)列的通項與前n項和的關(guān)系求通項公式的方法,屬于基礎(chǔ)題.14、3600【解析】先設(shè)分割大房間為間,小房間為間,收益為元,列出約束條件,再根據(jù)約束條件畫出可行域,設(shè),再利用的幾何意義求最值,只需求出直線過可行域內(nèi)的整數(shù)點時,從而得到值即可【詳解】解:設(shè)裝修大房間間,小房間間,收益為萬元,則,目標函數(shù),由,解得畫出可行域,得到目標函數(shù)過點時,有最大值,故應(yīng)隔出大房間3間和小房間8間,每天能獲得最大的房租收益最大,且為3600元故答案為:360015、【解析】由直線垂直的充要條件列式計算即可得答案.【詳解】解:因為直線與直線垂直,所以,解得故答案為:16、【解析】由,求得圓心,再根據(jù)圓過原點,求得半徑即可.【詳解】由,可得,即圓心為,又圓過原點,所以圓的半徑,故圓的標準方程為故答案為:【點睛】本題主要考查圓的方程的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)兩點距離公式即可求半徑,進而得圓方程;(2)根據(jù)直線與圓的弦長公式即可求解【小問1詳解】由,所以圓O的方程為;【小問2詳解】由點O到直線的距離為所以弦長18、(1)(2)證明見解析.【解析】(1)利用導(dǎo)數(shù)判斷出在上單增,在上單減,在處取得唯一的極值,列不等式組,即可求出實數(shù)a的取值范圍;(2)記函數(shù),把證明,轉(zhuǎn)化為只需證明,用分析法證明即可.【小問1詳解】,定義域為,.令,解得:;令,解得:所以在上單增,在上單減,在處取得唯一的極值.要使函數(shù)在上有極值,只需,解得:,即實數(shù)a的取值范圍為.【小問2詳解】記函數(shù).則函數(shù)有兩個不等實根.因為,,兩式相減得,,兩式相加得,.因為,所以要證,只需證明,只需證明,只需證明,.證.設(shè),只需證明.記,則,所以在上2單增,所以,所以,即,所以.即證.【點睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點,對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個角度進行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系;(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù);(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題;(4)利用導(dǎo)數(shù)證明不等式19、(1)或(2)存在,【解析】(1)確定點為拋物線的焦點,則根據(jù)拋物線的焦半徑公式,結(jié)合拋物線方程,求得答案;(2)假設(shè)存在正數(shù)m,使得以MN為直徑的圓經(jīng)過坐標原點O,可推得,由此可設(shè)直線方程,聯(lián)立拋物線方程,利用根與系數(shù)的關(guān)系,代入到中,可得結(jié)論.【小問1詳解】依題意得為的焦點,故,解得,故,則∴點的坐標或;【小問2詳解】假設(shè)存在正數(shù),使得以為直徑的圓經(jīng)過坐標原點,∴,設(shè)直線:,,,由,得,則,,∵,,∴,解得或(舍去)所以存在正數(shù),使得以為直徑的圓經(jīng)過坐標原點.20、(1)證明見解析(2)【解析】(1)利用空間向量求出空間直線的向量積,即可證明兩直線垂直.(2)利用空間向量求直線與平面所成空間角的正弦就是就出平面的法向量與直線的方向向量之間夾角的余弦即可.【小問1詳解】如圖,以為坐標原點,,,所在直線為,,軸,建立空間直角坐標系,則,,,,,因為,,所以,即;【小問2詳解】設(shè)平面的法向量為因為,由,得,令,則所以平面的一個法向量為,又所以故直線與平面所成角的正弦值為21、(1);(2).【解析】(1)將題設(shè)條件化為,結(jié)合余弦定理即可知C的大小.(2)由(1)及正弦定理邊角關(guān)系可得,再應(yīng)用輔助角公式、正弦函數(shù)的性質(zhì)即可求最大值.【小問1詳解】由,得,即,由余弦定理得:,又,所以【小問2詳解】由(1)知:,則,設(shè)△ABC外接圓半徑為R,則,當時,取得最大值為22、(1)證明見解析(2)【解析】(1)由線面垂直的判斷定理證明平面PAB,再由線面垂直的性質(zhì)定理即可證明;(2)以A為原點,AB,AC,AP分別為x軸,y軸,z軸,建立空間直角坐標系,設(shè),求出平面PCD的法向量的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《電子商務(wù)BB模式》課件
- 《人事労務(wù)管理論A》課件
- 水資源保護在冶金工業(yè)的應(yīng)用實踐-洞察分析
- 虛擬現(xiàn)實測試評估方法探討-洞察分析
- 新型反應(yīng)器設(shè)計與應(yīng)用-洞察分析
- 虛擬現(xiàn)實在繡品設(shè)計中的應(yīng)用-洞察分析
- 《頭部體外標志》課件
- 音樂與創(chuàng)傷后應(yīng)激障礙-洞察分析
- 運動服裝市場細分研究-洞察分析
- 云邊協(xié)同線延遲分析-洞察分析
- T∕CDHA 9-2022 熱力管道安全評估方法
- 試驗前準備狀態(tài)檢查報告
- 理正深基坑之鋼板樁受力計算
- 根管治療--ppt課件
- 國家開放大學(xué)電大??啤吨袊敶膶W(xué)》期末試題及答案
- 廣東話粵語姓名拼音大全
- 閘門及啟閉機安裝專項施工方案
- 應(yīng)征公民體格檢查表(征兵)
- 鋼筋位置及保護層厚度檢測ppt課件
- 巖石堅固性和穩(wěn)定性分級表
- CNC程序控制管理辦法
評論
0/150
提交評論