![內(nèi)蒙古赤峰林東第一中學(xué)2025屆數(shù)學(xué)高二上期末預(yù)測(cè)試題含解析_第1頁(yè)](http://file4.renrendoc.com/view12/M00/26/05/wKhkGWcID2eAEGt5AAG3IfNYIpk462.jpg)
![內(nèi)蒙古赤峰林東第一中學(xué)2025屆數(shù)學(xué)高二上期末預(yù)測(cè)試題含解析_第2頁(yè)](http://file4.renrendoc.com/view12/M00/26/05/wKhkGWcID2eAEGt5AAG3IfNYIpk4622.jpg)
![內(nèi)蒙古赤峰林東第一中學(xué)2025屆數(shù)學(xué)高二上期末預(yù)測(cè)試題含解析_第3頁(yè)](http://file4.renrendoc.com/view12/M00/26/05/wKhkGWcID2eAEGt5AAG3IfNYIpk4623.jpg)
![內(nèi)蒙古赤峰林東第一中學(xué)2025屆數(shù)學(xué)高二上期末預(yù)測(cè)試題含解析_第4頁(yè)](http://file4.renrendoc.com/view12/M00/26/05/wKhkGWcID2eAEGt5AAG3IfNYIpk4624.jpg)
![內(nèi)蒙古赤峰林東第一中學(xué)2025屆數(shù)學(xué)高二上期末預(yù)測(cè)試題含解析_第5頁(yè)](http://file4.renrendoc.com/view12/M00/26/05/wKhkGWcID2eAEGt5AAG3IfNYIpk4625.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
內(nèi)蒙古赤峰林東第一中學(xué)2025屆數(shù)學(xué)高二上期末預(yù)測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,若,,則外接圓半徑為()A. B.C. D.2.雙曲線的焦點(diǎn)坐標(biāo)為()A. B.C. D.3.已知兩圓相交于兩點(diǎn),,兩圓圓心都在直線上,則值為()A. B.C. D.4.已知函數(shù),則的值為()A. B.0C.1 D.5.彬塔,又稱開(kāi)元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學(xué)為測(cè)量彬塔高度,選取了與塔底在同一水平面內(nèi)的兩個(gè)測(cè)量基點(diǎn)與,現(xiàn)測(cè)得,,,在點(diǎn)測(cè)得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.6.在正方體中,,則()A. B.C. D.7.若雙曲線的一條漸近線方程為.則()A. B.C.2 D.48.甲乙兩名運(yùn)動(dòng)員在某項(xiàng)體能測(cè)試中的6次成績(jī)統(tǒng)計(jì)如表:甲9816151514乙7813151722分別表示甲乙兩名運(yùn)動(dòng)員這項(xiàng)測(cè)試成績(jī)的平均數(shù),分別表示甲乙兩名運(yùn)動(dòng)員這項(xiàng)測(cè)試成績(jī)的標(biāo)準(zhǔn)差,則有()A., B.,C., D.,9.如圖,是邊長(zhǎng)為4的等邊三角形的中位線,將沿折起,使得點(diǎn)A與P重合,平面平面,則四棱錐外接球的表面積是()A. B.C. D.10.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:廣告費(fèi)用(萬(wàn)元)4235銷售額(萬(wàn)元)49263954根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí)銷售額為A.63.6萬(wàn)元 B.65.5萬(wàn)元C.67.7萬(wàn)元 D.72.0萬(wàn)元11.雙曲線:的實(shí)軸長(zhǎng)為()A. B.C.4 D.212.已知直線與平行,則系數(shù)()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一道數(shù)學(xué)難題,在半小時(shí)內(nèi),甲能解決的概率是,乙能解決的概率是,兩人試圖獨(dú)立地在半小時(shí)內(nèi)解決它,則問(wèn)題得到解決的概率是________.14.如圖,某海輪以的速度航行,若海輪在點(diǎn)測(cè)得海面上油井在南偏東,向北航行后到達(dá)點(diǎn),測(cè)得油井在南偏東,海輪改為沿北偏東的航向再行駛到達(dá)點(diǎn),則,間的距離是________15.已知,,且,則的最小值為_(kāi)__________16.已知函數(shù),則_________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在公差為的等差數(shù)列中,已知,且成等比數(shù)列.(Ⅰ)求;(Ⅱ)若,求.18.(12分)如圖,在空間四邊形中,分別是的中點(diǎn),分別是上的點(diǎn),滿足.(1)求證:四點(diǎn)共面;(2)設(shè)與交于點(diǎn),求證:三點(diǎn)共線.19.(12分)設(shè)數(shù)列是公比為正整數(shù)的等比數(shù)列,滿足,,設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(3)已知數(shù)列,設(shè),求數(shù)列的前項(xiàng)和.20.(12分)已知函數(shù)f(x)=x﹣lnx(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值.21.(12分)已知橢圓的離心率為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)過(guò)點(diǎn)作軸的平行線交軸于點(diǎn),過(guò)點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn)、,直線、與軸分別交于、兩點(diǎn),若,求直線的方程;(3)在第(2)問(wèn)條件下,點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),請(qǐng)問(wèn):當(dāng)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱時(shí)的面積是否達(dá)到最大?并說(shuō)明理由.22.(10分)已知橢圓的離心率為,右焦點(diǎn)到上頂點(diǎn)的距離為.(1)求橢圓的方程;(2)斜率為2的直線經(jīng)過(guò)橢圓的左焦點(diǎn),且與橢圓相交于兩點(diǎn),求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)三角形面積公式求出c,再由余弦定理求出a,根據(jù)正弦定理即可求外接圓半徑.【詳解】,,,解得由正弦定理可得:,所以故選:A2、C【解析】把雙曲線方程化為標(biāo)準(zhǔn)形式,直接寫出焦點(diǎn)坐標(biāo).【詳解】,焦點(diǎn)在軸上,,故焦點(diǎn)坐標(biāo)為.故選:C.3、A【解析】由相交弦的性質(zhì),可得與直線垂直,且的中點(diǎn)在這條直線上;由與直線垂直,可得,解可得的值,即可得的坐標(biāo),進(jìn)而可得中點(diǎn)的坐標(biāo),代入直線方程可得;進(jìn)而將、相加可得答案【詳解】根據(jù)題意,由相交弦的性質(zhì),相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點(diǎn)在這條直線上;由與直線垂直,可得,解可得,則,故中點(diǎn)為,且其在直線上,代入直線方程可得,1,可得;故;故選:A【點(diǎn)睛】方法點(diǎn)睛:解答圓和圓的位置關(guān)系時(shí),要注意利用平面幾何圓的知識(shí)來(lái)分析解答.4、B【解析】求導(dǎo),代入,求出,進(jìn)而求出.【詳解】,則,即,解得:,故,所以故選:B5、D【解析】在△中有,再應(yīng)用正弦定理求,再在△中,即可求塔高.【詳解】由題設(shè)知:,又,△中,可得,在△中,,則.故選:D6、A【解析】根據(jù)空間向量基本定理,結(jié)合空間向量加法的幾何意義進(jìn)行求解即可.【詳解】因?yàn)?,而,所以有,故選:A7、C【解析】求出漸近線方程為,列出方程求出.【詳解】雙曲線的漸近線方程為,因?yàn)?,所以,所?故選:C8、B【解析】根據(jù)給定統(tǒng)計(jì)表計(jì)算、,再比較、大小判斷作答.【詳解】依題意,,,,,所以,.故選:B9、A【解析】分別取的中點(diǎn),易得,則點(diǎn)為四邊形的外接圓的圓心,則四棱錐外接球的球心在過(guò)點(diǎn)且垂直平面的直線上,設(shè)球心為,設(shè)外接球的半徑為,,利用勾股定理求得半徑,從而可得出答案.【詳解】解:分別取的中點(diǎn),在等邊三角形中,,是中位線,則都是等邊三角形,所以,所以點(diǎn)為四邊形的外接圓的圓心,則四棱錐外接球的球心在過(guò)點(diǎn)且垂直平面的直線上,設(shè)球心為,由為的中點(diǎn),所以,因?yàn)槠矫嫫矫?,且平面平面,平面,所以平面,則,設(shè)外接球半徑為,,,則,,所以,解得,所以,所以四棱錐外接球的表面積是.故選:A.第II卷10、B【解析】,∵數(shù)據(jù)的樣本中心點(diǎn)在線性回歸直線上,回歸方程中的為9.4,∴42=9.4×3.5+a,∴=9.1,∴線性回歸方程是y=9.4x+9.1,∴廣告費(fèi)用為6萬(wàn)元時(shí)銷售額為9.4×6+9.1=65.5考點(diǎn):線性回歸方程11、A【解析】根據(jù)雙曲線的幾何意義即可得到結(jié)果.【詳解】因?yàn)殡p曲線的實(shí)軸長(zhǎng)為2a,而雙曲線中,,所以其實(shí)軸長(zhǎng)為故選:A12、B【解析】由直線的平行關(guān)系可得,解之可得【詳解】解:直線與直線平行,,解得故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分甲解決乙不能解決,甲不能解決乙能解決,甲能解決乙也能解決三類,利用獨(dú)立事件的概率求解.【詳解】因?yàn)榧啄芙鉀Q的概率是,乙能解決的概率是,所以問(wèn)題得到解決的概率是,故答案為:14、【解析】根據(jù)條件先由正弦定理求出的長(zhǎng),得出,求出的長(zhǎng),由勾股定理可得答案.【詳解】海輪向北航行后到達(dá)點(diǎn),則由題意,在中,又則,由正弦定理可得:,即在中,,所以故答案為:15、25【解析】根據(jù),,且,由,利用基本不等式求解.【詳解】因?yàn)?,,且,所以,?dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以的最小值為25,故答案為:2516、【解析】利用函數(shù)的解析式由內(nèi)到外逐層計(jì)算可得的值.【詳解】,,因此,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)或(Ⅱ)【解析】(Ⅰ)由題意求得數(shù)列的公差后可得通項(xiàng)公式.(Ⅱ)結(jié)合條件可得,分和兩種情況去掉中的絕對(duì)值后,利用數(shù)列的前n項(xiàng)和公式求解試題解析:(Ⅰ)∵成等比數(shù)列,∴,整理得,解得或,當(dāng)時(shí),;當(dāng)時(shí),所以或(Ⅱ)設(shè)數(shù)列前項(xiàng)和為,∵,∴,當(dāng)時(shí),,∴;當(dāng)時(shí),綜上18、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】【小問(wèn)1詳解】連接AC,分別是的中點(diǎn),.在中,,所以四點(diǎn)共面.【小問(wèn)2詳解】,所以,又平面平面,同理平面,為平面與平面的一個(gè)公共點(diǎn).又平面平面,即三點(diǎn)共線.19、(1)(2)證明見(jiàn)解析,(3)【解析】(1)根據(jù)等比數(shù)列列出方程組求解首項(xiàng)、公比即可得解;(2)化簡(jiǎn)后得,可證明數(shù)列是等差數(shù)列,即可得出,再求出即可;(3)利用錯(cuò)位相減法求出數(shù)列的和.【小問(wèn)1詳解】設(shè)公比為,由條件可知,,所以;【小問(wèn)2詳解】,又,所以,所以數(shù)列是以為首項(xiàng),為公差等差數(shù)列,所以,所以.【小問(wèn)3詳解】,,兩式相減可得,,.20、(1)(2)極小值為,無(wú)極大值【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)數(shù)的幾何意義即可求出切線方程;(2)根據(jù)導(dǎo)數(shù)的符號(hào)求出函數(shù)的單調(diào)區(qū)間,再根據(jù)極值的定義即可得出答案.【小問(wèn)1詳解】解:,則,,即切線的斜率為0,所以曲線y=f(x)在點(diǎn)(1,f(1))處曲線的切線方程為;小問(wèn)2詳解】當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在上遞減,在上遞增,函數(shù)的極小值為,無(wú)極大值.21、(1);(2);(3)當(dāng)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱時(shí),的面積達(dá)到最大,理由見(jiàn)解析.【解析】(1)設(shè),可得出,,將點(diǎn)的坐標(biāo)代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由已知可得,結(jié)合韋達(dá)定理可求得的值,即可得出直線的方程;(3)設(shè)與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當(dāng)點(diǎn)為直線與橢圓的切點(diǎn)時(shí),的面積達(dá)到最大,求出直線與橢圓的切點(diǎn)坐標(biāo),可得出結(jié)論.【小問(wèn)1詳解】解:因?yàn)椋O(shè),則,,所以,橢圓的方程可表示為,將點(diǎn)的坐標(biāo)代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問(wèn)2詳解】解:設(shè)線段的中點(diǎn)為,因?yàn)?,則軸,故直線、的傾斜角互補(bǔ),易知點(diǎn),若直線軸,則、為橢圓短軸的兩個(gè)頂點(diǎn),不妨設(shè)點(diǎn)、,則,,,不合乎題意.所以,直線的斜率存在,設(shè)直線的方程為,設(shè)點(diǎn)、,聯(lián)立,可得,,由韋達(dá)定理可得,,,,則,所以,解得,因此,直線的方程為.【小問(wèn)3詳解】解:設(shè)與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當(dāng)點(diǎn)為直線與橢圓的切點(diǎn)時(shí),此時(shí)的面積取最大值,當(dāng)時(shí),方程(*)為,解得,此時(shí),即點(diǎn).此時(shí),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,因此,當(dāng)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱時(shí),的面積達(dá)到最大.【點(diǎn)睛】方法點(diǎn)睛:圓錐曲線中的最值問(wèn)題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來(lái)求最值;二是代數(shù)法,常將圓錐曲線的最值問(wèn)題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問(wèn)題,然后利用基本不等式、函數(shù)的單調(diào)性或三角
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 系泊絞車行業(yè)深度研究報(bào)告
- 氣相沉積設(shè)備項(xiàng)目可行性研究報(bào)告
- 沖壓廠勞務(wù)合同范本
- 勞務(wù)分包薪資合同范本
- 個(gè)人債務(wù)轉(zhuǎn)移合同范本
- 二手無(wú)產(chǎn)權(quán)房購(gòu)買合同范本
- 供應(yīng)飯店用品合同范例
- 2024年安全準(zhǔn)入考試復(fù)習(xí)測(cè)試卷附答案
- 專用合同范本
- 剪輯兼職合同范例
- 2024-2025學(xué)年中小學(xué)校第二學(xué)期師德師風(fēng)工作計(jì)劃:必看!新學(xué)期師德師風(fēng)建設(shè)秘籍大公開(kāi)(附2月-7月工作安排表)
- 《急性心力衰竭的急救處理》課件
- 小學(xué)六年級(jí)數(shù)學(xué)上冊(cè)《簡(jiǎn)便計(jì)算》練習(xí)題(310題-附答案)
- 青海省西寧市海湖中學(xué)2025屆中考生物仿真試卷含解析
- 2024年河南省《輔警招聘考試必刷500題》考試題庫(kù)及答案【全優(yōu)】
- -情景交際-中考英語(yǔ)復(fù)習(xí)考點(diǎn)
- 安全隱患報(bào)告和舉報(bào)獎(jiǎng)勵(lì)制度
- 地理標(biāo)志培訓(xùn)課件
- 2023行政主管年終工作報(bào)告五篇
- 2024年中國(guó)養(yǎng)老產(chǎn)業(yè)商學(xué)研究報(bào)告-銀發(fā)經(jīng)濟(jì)專題
- GA/T 1003-2024銀行自助服務(wù)亭技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論