版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
黑龍江省齊齊哈爾市甘南一中2025屆數(shù)學(xué)高二上期末達標(biāo)檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖象如圖所示,則其導(dǎo)函數(shù)的圖象可能是()A. B.C. D.2.方程表示的曲線是()A.一個橢圓和一個點 B.一個雙曲線的右支和一條直線C.一個橢圓一部分和一條直線 D.一個橢圓3.若傾斜角為的直線過兩點,則實數(shù)()A. B.C. D.4.命題“,”的否定是()A., B.,C., D.,5.已知點是雙曲線的左焦點,是雙曲線右支上一動點,過點作軸垂線并延長交雙曲線左支于點,當(dāng)點向上移動時,的值()A.增大 B.減小C.不變 D.無法確定6.已知過點的直線與圓相切,且與直線平行,則()A.2 B.1C. D.7.已知點,,直線:與線段相交,則實數(shù)的取值范圍是()A.或 B.或C. D.8.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點,過F1的直線與雙曲線左、右兩支分別交于點P、Q.若,M為PQ的中點,且,則雙曲線的離心率為()A. B.C. D.9.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)10.已知空間四邊形,其對角線、,、分別是邊、的中點,點在線段上,且使,用向量,表示向量是A. B.C. D.11.已知數(shù)列滿足,且,那()A.19 B.31C.52 D.10412.在平面直角坐標(biāo)系中,雙曲線C:的左焦點為F,過F且與x軸垂直的直線與C交于A,B兩點,若是正三角形,則C的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某足球俱樂部選拔青少年隊員,每人要進行3項測試.甲隊員每項測試通過的概率均為,且不同測試之間相互獨立,設(shè)他通過的測試項目數(shù)為X,則_________14.由曲線圍成的圖形的面積為________15.函數(shù)的圖象在點處的切線的方程是______.16.圓與圓的公共弦長為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在△中,角A,B,C的對邊分別是a,b,c,且.(1)求角C的大小;(2)若,求△的面積S的最大值.18.(12分)設(shè)數(shù)列是公比為正整數(shù)的等比數(shù)列,滿足,,設(shè)數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(3)已知數(shù)列,設(shè),求數(shù)列的前項和.19.(12分)已知直線和的交點為P,求:(1)過點P且與直線垂直的直線l的方程;(2)以點P為圓心,且與直線相交所得弦長為12的圓的方程;(3)從下面①②兩個問題中選一個作答,①若直線l過點,且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長的圓的方程注:如果選擇兩個問題分別作答,按第一個計分20.(12分)已知點為橢圓C的右焦點,P為橢圓上一點,且(O為坐標(biāo)原點),.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)經(jīng)過點的直線l與橢圓C交于A,B兩點,求弦的取值范圍.21.(12分)如圖,在四棱錐中,底面,底面是邊長為2的正方形,,F(xiàn),G分別是,的中點(1)求證:平面;(2)求平面與平面的夾角的大小22.(10分)已知等差數(shù)列中,,前5項的和為,數(shù)列滿足,(1)求數(shù)列,的通項公式;(2)記,求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)原函數(shù)圖象判斷出函數(shù)單調(diào)性,由此判斷導(dǎo)函數(shù)的圖象.【詳解】原函數(shù)在上從左向右有增、減、增,個單調(diào)區(qū)間;在上遞減.所以導(dǎo)函數(shù)在上從左向右應(yīng)為:正、負(fù)、正;在上應(yīng)為負(fù).所以A選項符合.故選:A2、C【解析】由可得,或,再由方程判斷所表示的曲線.【詳解】由可得,或,即或,則該方程表示一個橢圓的一部分和一條直線.故選:C3、A【解析】解方程即得解.【詳解】解:由題得.故選:A4、D【解析】根據(jù)含一個量詞的命題的否定方法:修改量詞,否定結(jié)論,直接得到結(jié)果.【詳解】命題“,”的否定是“,”.故選:D5、C【解析】令雙曲線右焦點為,由對稱性可知,,結(jié)合雙曲線的定義即可得出結(jié)果.【詳解】令雙曲線右焦點為,由對稱性可知,,則,為常數(shù),故選:C.6、C【解析】先根據(jù)垂直關(guān)系設(shè)切線方程,再根據(jù)圓心到切線距離等于半徑列式解得結(jié)果.【詳解】因為切線與直線平行,所以切線方程可設(shè)為因為切線過點P(2,2),所以因為與圓相切,所以故選:C7、A【解析】由可求出直線過定點,作出圖象,求出和,數(shù)形結(jié)合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點,由可得,作出圖象如圖所示:,,若直線與線段相交,則或,解得或,所以實數(shù)的取值范圍是或,故選:A.8、D【解析】由題干條件得到,設(shè)出,利用雙曲線定義表達出其他邊長,得到方程,求出,從而得到,,利用勾股定理求出的關(guān)系,求出離心率.【詳解】因為M為PQ的中點,且,所以△為等腰三角形,即,因為,設(shè),則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D9、C【解析】根據(jù)莖葉圖依次計算甲和乙的平均數(shù)、方差、中位數(shù)和極差即可得到結(jié)果.【詳解】甲的平均數(shù)為:;乙的平均數(shù)為:;甲和乙的平均數(shù)相同;甲的方差為:;乙的方差為:;甲和乙的方差不相同;甲的極差為:;乙的極差為:;甲和乙的極差不相同;甲的中位數(shù)為:;乙的中位數(shù)為:;甲和乙的中位數(shù)不相同.故選:C.10、C【解析】根據(jù)所給的圖形和一組基底,從起點出發(fā),把不是基底中的向量,用是基底的向量來表示,就可以得到結(jié)論【詳解】解:故選:【點睛】本題考查向量的基本定理及其意義,解題時注意方法,即從要表示的向量的起點出發(fā),沿著空間圖形的棱走到終點,若出現(xiàn)不是基底中的向量的情況,再重復(fù)這個過程,屬于基礎(chǔ)題11、D【解析】根據(jù)等比數(shù)列的定義,結(jié)合等比數(shù)列的通項公式進行求解即可.【詳解】因為,所以有,因此數(shù)列是公比的等比數(shù)列,因為,所以,故選:D12、A【解析】設(shè)雙曲線半焦距為c,求出,由給定的正三角形建立等量關(guān)系,結(jié)合計算作答.【詳解】設(shè)雙曲線半焦距為c,則,而軸,由得,從而有,而是正三角形,即有,則,整理得,因此有,而,解得,所以C的離心率為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)二項分布的方差公式即可求出【詳解】因為,所以故答案為:14、【解析】曲線圍成的圖形關(guān)于軸,軸對稱,故只需要求出第一象限的面積即可.【詳解】將或代入方程,方程不發(fā)生改變,故曲線關(guān)于關(guān)于軸,軸對稱,因此只需求出第一象限的面積即可.當(dāng),時,曲線可化為:,在第一象限為弓形,其面積為,故.故答案為:.15、【解析】求導(dǎo),求得,,根據(jù)直線的點斜式方程求得答案.【詳解】因為,,所以切線的斜率,切線方程是,即.故答案為:.16、【解析】兩圓方程相減可得公共弦所在直線方程,即該直線截其中一圓求弦長即可【詳解】圓與圓兩式相減得,公共弦所在直線方程為:圓,圓心為到公共弦的距離為:公共弦長故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由正弦定理、和角正弦公式及三角形內(nèi)角的性質(zhì)可得,進而可得C的大小;(2)由余弦定理可得,根據(jù)基本不等式可得,由三角形面積公式求面積的最大值,注意等號成立條件.【小問1詳解】由正弦定理知:,∴,又,∴,則,故.【小問2詳解】由,又,則,∴,當(dāng)且僅當(dāng)時等號成立,∴△的面積S的最大值為.18、(1)(2)證明見解析,(3)【解析】(1)根據(jù)等比數(shù)列列出方程組求解首項、公比即可得解;(2)化簡后得,可證明數(shù)列是等差數(shù)列,即可得出,再求出即可;(3)利用錯位相減法求出數(shù)列的和.【小問1詳解】設(shè)公比為,由條件可知,,所以;【小問2詳解】,又,所以,所以數(shù)列是以為首項,為公差等差數(shù)列,所以,所以.【小問3詳解】,,兩式相減可得,,.19、(1)(2)(3)答案見解析【解析】(1)聯(lián)立方程組求得交點的坐標(biāo),結(jié)合直線與直線垂直,求得直線的斜率為,利用直線的點斜式,即可求解;(2)先求得點到直線的距離為,由圓的的垂徑定理列出方程求得圓的半徑,即可求解;(3)若選①:設(shè)直線l的的斜率為,得到,結(jié)合題意列出方程,求得的值,即可求解;若選②,設(shè)所求圓的圓心為,半徑為,得到,利用圓的垂徑定理列出方程求得的值,即可求解.【小問1詳解】解:由直線和的交點為P,聯(lián)立方程組,解得,即,因為直線與直線垂直,所以直線的斜率為,所以過點且與直線垂直的直線方程為,即.【小問2詳解】解:因為點到直線的距離為,設(shè)所求圓的半徑為,由圓的的垂徑定理得,弦長,解得,所以所求圓的方程為.【小問3詳解】解:若選①:直線l過點,且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,設(shè)直線l的的斜率為,可得直線的方程為,即,則直線與坐標(biāo)軸的交點分別為,由,解得或,所以所求直線的方程為或.若選②,設(shè)所求圓的圓心為,半徑為,因為圓與x軸相切,可得,又由圓心到直線的距離為,利用圓的垂徑定理可得,即,解得,即圓心坐標(biāo)為或,所以所求圓的方程為或.20、(1)(2)【解析】(1)利用橢圓定義求得橢圓的即可解決;(2)經(jīng)過點的直線l分為斜率不存在和存在兩種情況,分別去求弦,再去求其取值范圍即可.【小問1詳解】由題意得.記左焦點為,,則,,解得.由橢圓定義得:,則,所以橢圓C的方程為:.【小問2詳解】①當(dāng)直線l的斜率不存在時,.②當(dāng)直線l的斜率存在時,設(shè)斜率為k,則l的方程為.聯(lián)立橢圓與直線的方程(由于點在橢圓內(nèi),∴成立),且,,令,則,,,由得,綜上所述,弦的取值范圍為.【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系(2)涉及到直線方程的設(shè)法時,務(wù)必考慮全面,不要忽略直線斜率為0或不存在等特殊情形21、(1)證明見解析(2)【解析】(1)取中點連接,連接,證得四邊形為平行四邊形,,再證面,即可得到證明結(jié)果;(2)建立空間坐標(biāo)系,求面和面的法向量,即可得到兩個面的二面角的余弦值,進而得到二面角大小.【小問1詳解】如上圖,取中點連接,連接,均為線段中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《同分異構(gòu)體》課件
- 《證券課程介紹》課件
- 2024北京東城區(qū)高二(上)期末地理試題和答案
- 信息買斷與市場資源配置-洞察分析
- 新材料創(chuàng)新應(yīng)用-洞察分析
- 維修安全化-洞察分析
- 《色素碳黑的介紹》課件
- 灘涂貝類養(yǎng)殖生態(tài)安全與風(fēng)險評估-洞察分析
- 《賓語從句》課件2
- 藥物中毒預(yù)警模型構(gòu)建-洞察分析
- 共用線路三方協(xié)議合同范例
- 戰(zhàn)略規(guī)劃的關(guān)鍵要點
- 社會工作服務(wù)質(zhì)量保障措施
- 冬季高空作業(yè)施工方案
- 山西云時代技術(shù)有限公司招聘筆試題目
- 課程思政專題培訓(xùn)
- 食品買賣合同范本
- 心臟病專病中心申報
- 期末素養(yǎng)質(zhì)量檢測卷(試題)-2024-2025學(xué)年三年級上冊數(shù)學(xué)人教版
- 皮膚科銀屑病護理個案
- 2024年房地產(chǎn)開發(fā)商與承建商之間的工程承包合同
評論
0/150
提交評論