版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆陜西省榆林市第二中學(xué)數(shù)學(xué)高二上期末考試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過橢圓的左焦點(diǎn)作弦,則最短弦的長(zhǎng)為()A. B.2C. D.42.如圖,是函數(shù)的部分圖象,且關(guān)于直線對(duì)稱,則()A. B.C. D.3.設(shè)分別是橢圓的左、右焦點(diǎn),P是C上的點(diǎn),則的周長(zhǎng)為()A.13 B.16C.20 D.4.已知數(shù)列中,前項(xiàng)和為,且點(diǎn)在直線上,則=A. B.C. D.5.若a>b,c>d,則下列不等式中一定正確的是()A. B.C. D.6.為了解義務(wù)教育階段學(xué)校對(duì)雙減政策的落實(shí)程度,某市教育局從全市義務(wù)教育階段學(xué)校中隨機(jī)抽取了6所學(xué)校進(jìn)行問卷調(diào)查,其中有4所小學(xué)和2所初級(jí)中學(xué),若從這6所學(xué)校中再隨機(jī)抽取兩所學(xué)校作進(jìn)一步調(diào)查,則抽取的這兩所學(xué)校中恰有一所小學(xué)的概率是()A. B.C. D.7.命題“”為真命題一個(gè)充分不必要條件是()A. B.C. D.8.【山東省濰坊市二?!恳阎p曲線的離心率為,其左焦點(diǎn)為,則雙曲線的方程為()A. B.C. D.9.若方程表示圓,則實(shí)數(shù)的取值范圍為()A. B.C. D.10.已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,若,則的面積為()A. B.C. D.11.如圖,若斜邊長(zhǎng)為的等腰直角(與重合)是水平放置的的直觀圖,則的面積為()A.2 B.C. D.812.正方體中,E、F分別是與的中點(diǎn),則直線ED與所成角的余弦值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)某市有關(guān)統(tǒng)計(jì)公報(bào)顯示,隨著“一帶一路”經(jīng)貿(mào)合作持續(xù)深化,該市對(duì)外貿(mào)易近幾年持續(xù)繁榮,2017年至2020年每年進(jìn)口總額x(單位:千億元)和出口總額y(單位:千億元)之間一組數(shù)據(jù)如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的進(jìn)出口總額x,y滿足線性相關(guān)關(guān)系,則______;若計(jì)劃2022年出口總額達(dá)到5千億元,預(yù)計(jì)該年進(jìn)口總額為______千億元14.拋物線上的點(diǎn)到其焦點(diǎn)的最短距離為_________.15.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高二被抽取的人數(shù)為__.16.已知圓的圓心與點(diǎn)關(guān)于直線對(duì)稱,直線與圓相交于、兩點(diǎn),且,則圓的方程為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,是邊長(zhǎng)為2的正三角形,底面為菱形,且平面平面,,為上一點(diǎn),滿足.(1)證明:;(2)求二面角的余弦值.18.(12分)求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程(1)中心在原點(diǎn),實(shí)軸在軸上,一個(gè)焦點(diǎn)在直線上的等軸雙曲線;(2)橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率等于,且它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn);(3)經(jīng)過點(diǎn)拋物線19.(12分)已知拋物線的焦點(diǎn)為,點(diǎn)為拋物線上一點(diǎn),且.(1)求拋物線方程;(2)直線與拋物線相交于兩個(gè)不同的點(diǎn),為坐標(biāo)原點(diǎn),若,求實(shí)數(shù)的值;20.(12分)在平面直角坐標(biāo)系中,設(shè)橢圓()的離心率是e,定義直線為橢圓的“類準(zhǔn)線”,已知橢圓C的“類準(zhǔn)線”方程為,長(zhǎng)軸長(zhǎng)為8.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)O為坐標(biāo)原點(diǎn),A為橢圓C的右頂點(diǎn),直線l交橢圓C于E,F(xiàn)兩不同點(diǎn)(點(diǎn)E,F(xiàn)與點(diǎn)A不重合),且滿足,若點(diǎn)P滿足,求直線的斜率的取值范圍.21.(12分)如圖,在三棱錐中,,點(diǎn)為線段上的點(diǎn).(1)若平面,試確定點(diǎn)的位置,并說明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.22.(10分)已知等差數(shù)列}的公差為整數(shù),為其前n項(xiàng)和,,(1)求{}的通項(xiàng)公式:(2)設(shè),數(shù)列的前n項(xiàng)和為,求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】求出橢圓的通徑,即可得到結(jié)果【詳解】過橢圓的左焦點(diǎn)作弦,則最短弦的長(zhǎng)為橢圓的通徑:故選:A2、C【解析】先根據(jù)條件確定為函數(shù)的極大值點(diǎn),得到的值,再根據(jù)圖像的單調(diào)性和導(dǎo)數(shù)幾何意義得到和的正負(fù)即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點(diǎn),所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導(dǎo)數(shù)的幾何意義,所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導(dǎo)數(shù)的幾何意義所以.即.故選:C.3、B【解析】利用橢圓的定義及即可得到答案.【詳解】由橢圓的定義,,焦距,所以的周長(zhǎng)為.故選:B4、C【解析】點(diǎn)在一次函數(shù)上的圖象上,,數(shù)列為等差數(shù)列,其中首項(xiàng)為,公差為,,數(shù)列的前項(xiàng)和,,故選C考點(diǎn):1、等差數(shù)列;2、數(shù)列求和5、B【解析】根據(jù)不等式的性質(zhì)及反例判斷各個(gè)選項(xiàng).【詳解】因?yàn)閏>d,所以,所以,所以B正確;時(shí),不滿足選項(xiàng)A;時(shí),,且,所以不滿足選項(xiàng)CD;故選:B6、A【解析】由組合知識(shí)結(jié)合古典概型概率公式求解即可.【詳解】從這6所學(xué)校中隨機(jī)抽取兩所學(xué)校的情況共有種,這兩所學(xué)校中恰有一所小學(xué)的情況共有種,則其概率為.故選:A7、B【解析】求解命題為真命題的充要條件,再利用集合包含關(guān)系判斷【詳解】命題“”為真命題,則≤1,只有是的真子集,故選項(xiàng)B符合題意故選:B8、D【解析】分析:根據(jù)題設(shè)條件,列出方程,求出,,的值,即可求得雙曲線得標(biāo)準(zhǔn)方程詳解:∵雙曲線的離心率為,其左焦點(diǎn)為∴,∴∵∴∴雙曲線的標(biāo)準(zhǔn)方程為故選D.點(diǎn)睛:本題考查雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,根據(jù)題設(shè)條件求出,,的值是解決本題的關(guān)鍵.9、D【解析】將方程化為標(biāo)準(zhǔn)式即可.【詳解】方程化為標(biāo)準(zhǔn)式得,則.故選:D.10、B【解析】求出,可知為等腰三角形,取的中點(diǎn),可得出,利用勾股定理求得,利用三角形的面積公式可求得結(jié)果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點(diǎn),因?yàn)?,則,由勾股定理可得,所以,.故選:B.11、C【解析】由斜二測(cè)還原圖形計(jì)算即可求得結(jié)果.【詳解】在斜二測(cè)直觀圖中,由為等腰直角三角形,,可得,.還原原圖形如圖:則,則.故選:C12、A【解析】以A為原點(diǎn)建立空間直角坐標(biāo)系,求出E,F,D,D1點(diǎn)的坐標(biāo),利用向量求法求解【詳解】如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)正方體的邊長(zhǎng)為2,則,,,,,直線與所成角的余弦值為:.故選:A【點(diǎn)睛】本題考查異面直線所成角的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、①.1.6;②.3.65.【解析】根據(jù)給定數(shù)表求出樣本中心點(diǎn),代入即可求得,取可求出該年進(jìn)口總額.詳解】由數(shù)表得:,,因此,回歸直線過點(diǎn),由,解得,此時(shí),,當(dāng)時(shí),即,解得,所以,預(yù)計(jì)該年進(jìn)口總額為千億元.故答案為:1.6;3.6514、1【解析】設(shè)出拋物線上點(diǎn)的坐標(biāo),利用兩點(diǎn)間距離公式建立函數(shù)關(guān)系,借助函數(shù)性質(zhì)計(jì)算作答.【詳解】拋物線的焦點(diǎn),設(shè)點(diǎn)為拋物線上任意一點(diǎn),于是有,當(dāng)且僅當(dāng)時(shí)取“=”,所以當(dāng),即點(diǎn)P為拋物線頂點(diǎn)時(shí),取最小值1.故答案為:115、【解析】利用分層抽樣可求得的值,再利用分層抽樣可求得高二被抽取的人數(shù).【詳解】高一年級(jí)抽取的人數(shù)為:人,則,則高二被抽取的人數(shù),故答案為:.16、【解析】利用對(duì)稱條件求出圓心C的坐標(biāo),借助直線被圓所截弦長(zhǎng)求出圓半徑即可寫出圓的方程.【詳解】設(shè)圓的圓心,依題意,,解得,即圓心,點(diǎn)C到直線的距離,因圓截直線所得弦AB長(zhǎng)為6,于是得圓C的半徑所以圓的方程為:.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)設(shè)為中點(diǎn),連接,根據(jù),證明平面得到答案.(2)以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,計(jì)算各點(diǎn)坐標(biāo),計(jì)算平面和平面的法向量,根據(jù)向量夾角公式計(jì)算得到答案.【詳解】(1)設(shè)為中點(diǎn),連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,則,,,,,,由,,,即,∴,,,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)二面角的平面角為,則,∴二面角的的余弦值為.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力,建立空間直角坐標(biāo)系是解題的關(guān)鍵.18、(1)(2)(3)或【解析】(1)由已知求得,再由等軸雙曲線的性質(zhì)可求得則,由此可求得雙曲線的方程;(2)由已知求得拋物線的焦點(diǎn)為,得出橢圓的,再根據(jù)橢圓的離心率求得,由此可得出橢圓的方程;(3)設(shè)拋物線的標(biāo)準(zhǔn)方程為:或,代入點(diǎn)求解即可.【小問1詳解】解:對(duì)于直線,令,得,所以,則,所以,所以中心在原點(diǎn),實(shí)軸在軸上,一個(gè)焦點(diǎn)在直線上的等軸雙曲線的方程為;【小問2詳解】解:由得拋物線的焦點(diǎn)為,所以對(duì)于橢圓,,又橢圓的離心率為,所以,解得,所以橢圓的方程;【小問3詳解】解:因?yàn)辄c(diǎn)在第三象限,所以滿足條件的拋物線的標(biāo)準(zhǔn)方程可以是:或,代入點(diǎn)得或,解得或,所以經(jīng)過點(diǎn)的拋物線的方程為或19、(1)(2)【解析】(1)根據(jù)拋物線過點(diǎn),且,利用拋物線的定義求解;(2)設(shè),聯(lián)立,根據(jù),由,結(jié)合韋達(dá)定理求解.【小問1詳解】解:由拋物線過點(diǎn),且,得所以拋物線方程為;【小問2詳解】設(shè),聯(lián)立得,,,,則,,即,解得或,又當(dāng)時(shí),直線與拋物線的交點(diǎn)中有一點(diǎn)與原點(diǎn)重合,不符合題意,故舍去;所以實(shí)數(shù)的值為.20、(1);(2).【解析】(1)由題意列關(guān)于,,的方程,聯(lián)立方程組求得,,,則橢圓方程可求;(2)分直線軸與直線l不垂直于x軸兩種情況討論,當(dāng)直線l不垂直于x軸時(shí),設(shè),,直線l:(,),聯(lián)立直線方程與橢圓方程,消元由,得到,再列出韋達(dá)定理,由則,解得,再由,求出的坐標(biāo),則,再利用基本不等式求出取值范圍;【詳解】解:(1)由題意得:,,又,聯(lián)立以上可得:,,,橢圓C的方程為.(2)由(1)得,當(dāng)直線軸時(shí),又,聯(lián)立得,解得或,所以,此時(shí),直線的斜率為0.當(dāng)直線l不垂直于x軸時(shí),設(shè),,直線l:(,),聯(lián)立,整理得,依題意,即(*)且,.又,,,即,且t滿足(*),,,故直線的斜率,當(dāng)時(shí),,當(dāng)且僅當(dāng),即時(shí)取等號(hào),此時(shí);當(dāng)時(shí),,當(dāng)且僅當(dāng),即時(shí)取等號(hào),此時(shí);綜上,直線的斜率的取值范圍為.【點(diǎn)睛】本題考查利用待定系數(shù)法求橢圓方程,直線與橢圓的綜合應(yīng)用,屬于難題.21、(1)點(diǎn)為MC的中點(diǎn),理由見解析;(2)【解析】(1)由線面垂直得到線線垂直,進(jìn)而由三線合一得到點(diǎn)為MC的中點(diǎn);(2)作出輔助線,找到二面角的平面角,利用勾股定理求出各邊長(zhǎng),用余弦定理求出答案.【小問1詳解】點(diǎn)為MC的中點(diǎn),理由如下:因?yàn)槠矫?,平面,所以,,又,由三線合一得:點(diǎn)為MC的中點(diǎn)【小問2詳解】取AB的中點(diǎn)H,連接PH,CH,則由(1)知:,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2 落花生(說課稿)2024-2025學(xué)年部編版五年級(jí)語文上冊(cè)
- 2024年食品添加劑生產(chǎn)企業(yè)食品原料采購(gòu)合同3篇
- 外匯資產(chǎn)管理合同(2篇)
- 2024年進(jìn)口食品批量買賣協(xié)議格式
- 專業(yè)科技協(xié)作協(xié)議模板2024版
- 房屋場(chǎng)地租賃合同標(biāo)準(zhǔn)
- 27《故事二則》說課稿-2024-2025學(xué)年語文四年級(jí)上冊(cè)統(tǒng)編版
- 稅務(wù)顧問服務(wù)稅務(wù)咨詢合同模板
- 建筑土建施工合同
- 優(yōu)2024年度醫(yī)療設(shè)備采購(gòu)與技術(shù)支持合同
- 演藝培訓(xùn)項(xiàng)目商業(yè)計(jì)劃書
- 《采礦工程英語》課件
- 2024年02月中國(guó)地質(zhì)調(diào)查局烏魯木齊自然資源綜合調(diào)查中心招考聘用62人筆試近6年高頻考題難、易錯(cuò)點(diǎn)薈萃答案帶詳解附后
- 《物聯(lián)網(wǎng)單片機(jī)應(yīng)用與開發(fā)》課程標(biāo)準(zhǔn)(含課程思政)
- 公司扭虧方案
- 國(guó)家開放大學(xué)《學(xué)前兒童游戲指導(dǎo)》期末復(fù)習(xí)題參考答案
- 誰是臥底小游戲
- 打造健康養(yǎng)生品牌的策劃方案
- 江蘇省常州市教育學(xué)會(huì)2023-2024學(xué)年八年級(jí)上學(xué)期期末學(xué)業(yè)水平檢測(cè)英語試題(無答案)
- 物業(yè)管理服務(wù)領(lǐng)域:保利物業(yè)企業(yè)組織架構(gòu)及部門職責(zé)
- 鄂州市重點(diǎn)中學(xué)2023年七年級(jí)數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析
評(píng)論
0/150
提交評(píng)論