![北京市衡中清大教育集團(tuán)2025屆數(shù)學(xué)高二上期末檢測試題含解析_第1頁](http://file4.renrendoc.com/view14/M07/0F/12/wKhkGWcJY2-AEZLEAAHNy0IoiPk521.jpg)
![北京市衡中清大教育集團(tuán)2025屆數(shù)學(xué)高二上期末檢測試題含解析_第2頁](http://file4.renrendoc.com/view14/M07/0F/12/wKhkGWcJY2-AEZLEAAHNy0IoiPk5212.jpg)
![北京市衡中清大教育集團(tuán)2025屆數(shù)學(xué)高二上期末檢測試題含解析_第3頁](http://file4.renrendoc.com/view14/M07/0F/12/wKhkGWcJY2-AEZLEAAHNy0IoiPk5213.jpg)
![北京市衡中清大教育集團(tuán)2025屆數(shù)學(xué)高二上期末檢測試題含解析_第4頁](http://file4.renrendoc.com/view14/M07/0F/12/wKhkGWcJY2-AEZLEAAHNy0IoiPk5214.jpg)
![北京市衡中清大教育集團(tuán)2025屆數(shù)學(xué)高二上期末檢測試題含解析_第5頁](http://file4.renrendoc.com/view14/M07/0F/12/wKhkGWcJY2-AEZLEAAHNy0IoiPk5215.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
北京市衡中清大教育集團(tuán)2025屆數(shù)學(xué)高二上期末檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.()A.-2 B.-1C.1 D.22.已知在空間直角坐標(biāo)系(O為坐標(biāo)原點)中,點關(guān)于x軸的對稱點為點B,則z軸與平面OAB所成的線面角為()A. B.C. D.3.甲乙兩個雷達(dá)獨立工作,它們發(fā)現(xiàn)飛行目標(biāo)的概率分別是0.9和0.8,飛行目標(biāo)被雷達(dá)發(fā)現(xiàn)的概率為()A.0.72 B.0.26C.0.7 D.0.984.設(shè),是雙曲線()的左、右焦點,是坐標(biāo)原點.過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.5.已知向量,則“”是“”的()A充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.甲乙兩名運動員在某項體能測試中的6次成績統(tǒng)計如表:甲9816151514乙7813151722分別表示甲乙兩名運動員這項測試成績的平均數(shù),分別表示甲乙兩名運動員這項測試成績的標(biāo)準(zhǔn)差,則有()A., B.,C., D.,7.某企業(yè)甲車間有200人,乙車間有300人,現(xiàn)用分層抽樣的方法在這兩個車間中抽取25人進(jìn)行技能考核,則從甲車間抽取的人數(shù)應(yīng)為()A.5 B.10C.8 D.98.瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,這條直線被后人稱為三角形的“歐拉線”.若滿足,頂點,且其“歐拉線”與圓相切,則:①.圓M上的點到原點的最大距離為②.圓M上存在三個點到直線的距離為③.若點在圓M上,則的最小值是④.若圓M與圓有公共點,則上述結(jié)論中正確的有()個A.1 B.2C.3 D.49.若橢圓的短軸為,一個焦點為,且為等邊三角形的橢圓的離心率是A. B.C. D.10.對于公差為1的等差數(shù)列,;公比為2的等比數(shù)列,,則下列說法不正確的是()A.B.C.數(shù)列為等差數(shù)列D.數(shù)列的前項和為11.拋物線的焦點為F,A,B是拋物線上兩點,若,若AB的中點到準(zhǔn)線的距離為3,則AF的中點到準(zhǔn)線的距離為()A.1 B.2C.3 D.412.已知等比數(shù)列的前項和為,公比為,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是等差數(shù)列,,,設(shè),數(shù)列前n項的和為,則______14.寫出一個與橢圓有公共焦點的橢圓方程__________15.設(shè)函數(shù)f(x)在R上滿足f(x)+xf′(x)>0,若a=(30.3)f(30.3),b=(logπ3)·f(logπ3),則a與b的大小關(guān)系為________16.拋物線的準(zhǔn)線方程是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項積,數(shù)列為等差數(shù)列,且,(1)求與的通項公式;(2)若,求數(shù)列的前n項和18.(12分)已知二次函數(shù).(1)若時,不等式恒成立,求實數(shù)a的取值范圍;(2)解關(guān)于x的不等式(其中).19.(12分)已知在平面直角坐標(biāo)系中,圓A:的圓心為A,過點B(,0)任作直線l交圓A于點C、D,過點B作與AD平行的直線交AC于點E.(1)求動點E的軌跡方程;(2)設(shè)動點E的軌跡與y軸正半軸交于點P,過點P且斜率為k1,k2的兩直線交動點E的軌跡于M、N兩點(異于點P),若,證明:直線MN過定點.20.(12分)如圖1,在中,,,,分別是,邊上的中點,將沿折起到的位置,使,如圖2(1)求點到平面的距離;(2)在線段上是否存在一點,使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由21.(12分)已知拋物線的頂點是坐標(biāo)原點,焦點在軸的正半軸上,是拋物線上的點,點到焦點的距離為1,且到軸的距離是(1)求拋物線的標(biāo)準(zhǔn)方程;(2)假設(shè)直線通過點,與拋物線相交于,兩點,且,求直線的方程22.(10分)如圖所示,在四棱錐中,平面,底面是等腰梯形,.且(1)證明:平面平面;(2)若,求平面與平面的夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用微積分基本定理計算得到答案.【詳解】.故選:.【點睛】本題考查了定積分的計算,意在考查學(xué)生的計算能力.2、B【解析】根據(jù)點關(guān)于坐標(biāo)軸對稱的性質(zhì),結(jié)合空間向量夾角公式進(jìn)行求解即可.【詳解】因為點關(guān)于x軸的對稱點為,所以,設(shè)平面OAB的一個法向量為,則得所以,令,得,所以又z軸的一個方向向量為,設(shè)z軸與平面OAB所成的線面角為,則,所以所求的線面角為,故選:B3、D【解析】利用對立事件的概率求法求飛行目標(biāo)被雷達(dá)發(fā)現(xiàn)的概率.【詳解】由題設(shè),飛行目標(biāo)不被甲、乙發(fā)現(xiàn)的概率分別為、,所以飛行目標(biāo)被雷達(dá)發(fā)現(xiàn)的概率為.故選:D4、B【解析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點睛:本題主要考查雙曲線的相關(guān)知識,考查了雙曲線的離心率和余弦定理的應(yīng)用,屬于中檔題5、A【解析】根據(jù)得出,根據(jù)充分必要條件的定義可判斷.【詳解】解:∵,向量,,∴,即,根據(jù)充分必要條件的定義可判斷:“”是“”的充分不必要條件,故選:A.6、B【解析】根據(jù)給定統(tǒng)計表計算、,再比較、大小判斷作答.【詳解】依題意,,,,,所以,.故選:B7、B【解析】根據(jù)分層抽樣的定義即可求解.【詳解】從甲車間抽取的人數(shù)為人故選:B8、A【解析】由題意求出的垂直平分線可得△的歐拉線,再由圓心到直線的距離求得,得到圓的方程,求出圓心到原點的距離,加上半徑判斷A;求出圓心到直線的距離判斷B;再由的幾何意義,即圓上的點與定點連線的斜率判斷C;由兩個圓有公共點可得圓心距與兩個半徑之間的關(guān)系,求得的取值范圍判斷D【詳解】由題意,△的歐拉線即的垂直平分線,,,的中點坐標(biāo)為,,則的垂直平分線方程為,即由“歐拉線”與圓相切,到直線的距離,,則圓的方程為:,圓心到原點的距離為,則圓上的點到原點的最大距離為,故①錯誤;圓心到直線的距離為,圓上存在三個點到直線的距離為,故②正確;的幾何意義:圓上的點與定點連線的斜率,設(shè)過與圓相切的直線方程為,即,由,解得,的最小值是,故③錯誤;的圓心坐標(biāo),半徑為,圓的的圓心坐標(biāo)為,半徑為,要使圓與圓有公共點,則圓心距的范圍為,,,解得,故④錯誤故選:A9、B【解析】因為為等邊三角形,所以.考點:橢圓的幾何性質(zhì).點評:橢圓圖形當(dāng)中有一個特征三角形,它的三邊分別為a,b,c.因而可據(jù)此求出離心率.10、B【解析】由等差數(shù)列的通項公式判定選項A正確;利用等比數(shù)列的通項公式求出,即判定選項B錯誤;利用對數(shù)的運算和等差數(shù)列的定義判定選項C正確;利用錯位相減法求和,即判定選項D正確.【詳解】對于A:由條件可得,,即選項A正確;對于B:由條件可得,,即選項B錯誤;對于C:因為,所以,則,即數(shù)列是首項和公差均為的等差數(shù)列,即選項C正確;對于D:,設(shè)數(shù)列的前項和為,則,,上面兩式相減可得,所以,即選項D正確.故選:B.11、C【解析】結(jié)合拋物線的定義求得,由此求得線段的中點到準(zhǔn)線的距離【詳解】拋物線方程為,則,由于中點到準(zhǔn)線的距離為3,結(jié)合拋物線的定義可知,即,所以線段的中點到準(zhǔn)線的距離為.故選:C12、D【解析】利用等比數(shù)列的求和公式可求得的值.【詳解】由等比數(shù)列的求和公式可得,解得.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、-3033【解析】先求得,進(jìn)而得到,再利用并項法求解.【詳解】解:因為是等差數(shù)列,且,,所以,解得,所以,則,所以,,,,.故答案為:-303314、(答案不唯一)【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程,以及分析即可【詳解】由題可知橢圓的形式應(yīng)為(,且),可取故答案為:(答案不唯一)15、a>b【解析】構(gòu)造函數(shù)F(x)=xf(x),利用F(x)的單調(diào)性求解即可.【詳解】設(shè)函數(shù)F(x)=xf(x),∴F′(x)=f(x)+xf′(x)>0,∴F(x)=xf(x)在R上為增函數(shù),又∵30.3>1,logπ3<1,∴30.3>logπ3,∴F(30.3)>F(logπ3),∴(30.3)f(30.3)>(logπ3)f(logπ3),∴a>b.故答案為:a>b.16、【解析】由題意可得p=4,所以準(zhǔn)線方程,填三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),.(2).【解析】(1)由已知得,,兩式相除得,由已知得,求得數(shù)列的公差為,由等差數(shù)列的通項公式可求得;(2)運用錯位相減法可求得.【小問1詳解】解:因為數(shù)列的前n項積,所以,所以,兩式相除得,因為數(shù)列為等差數(shù)列,且,,所以,即,所以數(shù)列的公差為,所以,所以,【小問2詳解】解:由(1)得,所以,,所以,所以.18、(1)(2)答案見解析【解析】(1)當(dāng)時將原不等式變形為,根據(jù)基本不等式計算即可;(2)將原不等式化為,求出參數(shù)a分別取值、、時的解集.【小問1詳解】不等式即為:,當(dāng)時,不等式可變形為:,因為,當(dāng)且僅當(dāng)時取等號,所以,所以實數(shù)a的取值范圍是;【小問2詳解】不等式,即,等價于,轉(zhuǎn)化為;當(dāng)時,因為,所以不等式的解集為;當(dāng)時,因為,所以不等式的解集為;當(dāng)時,因為,所以不等式的解集為;綜上所述,當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為.19、(1)(2)證明見解析【解析】(1)作出圖象,易知|EB|+|EA|為定值,根據(jù)橢圓定義即可判斷點E的軌跡,從而寫出其軌跡方程;(2)設(shè),當(dāng)直線MN斜率存在時,設(shè)直線MN的方程為:,聯(lián)立MN方程和E的軌跡方程得根與系數(shù)的關(guān)系,根據(jù)解出k與m的關(guān)系即可以判斷MN過定點;最后再考慮MN斜率不存在時是否也過該定點即可.【小問1詳解】由圓A:可得(,∴圓心A(-,0),圓的半徑r=8,,,可得,,,由橢圓的定義可得:點E的軌跡是以A(,0)、B(,0)為焦點,2a=8的橢圓,即a=4,c=,∴=16-7=9,∴動點E的軌跡方程為;【小問2詳解】由(1)知,P(0,3),設(shè),當(dāng)直線MN的斜率存在時,設(shè)直線MN的方程為:,由,可得,∴,,∵,∴,即,整理可得:,∴k=m+3或m=3,當(dāng)m=3時,直線MN的方程為:,此時過點P(0,3)不符合題意,∴k=m+3,∴直線MN的方程為:此時直線MN過點(-1,-3),當(dāng)直線MN的斜率不存在時,,,解得,此時直線MN的方程為:,過點(-1,-3),綜上所述:直線MN過定點(-1,-3).20、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標(biāo)系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果小問1詳解】在中,,因為,分別是,邊上的中點,所以∥,,所以,所以,因為,所以平面,所以平面,因為平面,所以,所以,因為平面,平面,所以平面平面,因為,所以,因為,所以是等邊三角形,取的中點,連接,則,,因為平面平面,平面平面,平面,所以平面,中,,所以邊上的高為,所以,在梯形中,,設(shè)點到平面的距離為,因,所以,所以,得,所以點到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點,建立如圖所示的空間直角坐標(biāo)系,則,設(shè),則,設(shè)平面的法向量為,則,令,則,設(shè)平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以21、(1);(2)【解析】(1)根據(jù)拋物線的定義,結(jié)合到焦點、軸的距離求,寫出拋物線方程.(2)直線的斜率不存在易得與不垂直與題設(shè)矛盾,設(shè)直線方程聯(lián)立拋物線方程,應(yīng)用韋達(dá)定理求,,進(jìn)而求,由題設(shè)向量垂直的坐標(biāo)表示有求直線方程即可.【詳解】(1)由己知,可設(shè)拋物線的方程為,又到焦點的距離是1,∴點到準(zhǔn)線的距離是1,又到軸的距離是,∴,解得,則拋物線方程是(2)假設(shè)直線的斜率不存在,則直線的方程為,與聯(lián)立可得交點、的坐標(biāo)分別為,,易得,可知直線與直線不垂直,不滿足題意,故假設(shè)不成立,∴直線的斜率存在.設(shè)直線為,整理得,設(shè),,聯(lián)立直線與拋物線的方程得,消去,并整理得,于是,,∴,又,因此,即,∴,解得或當(dāng)時,直線的方程是,不滿足,舍去當(dāng)時,直線的方程是,即,∴直線的方程是22、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年滌綸披巾項目可行性研究報告
- 2025年反絨革項目可行性研究報告
- 2025年度綠色建筑節(jié)能改造施工合同答辯狀
- 2025年度建筑節(jié)能工程施工合同規(guī)范范本
- 2025年素牛排項目投資可行性研究分析報告
- 2025年度大數(shù)據(jù)股份分配與智慧城市建設(shè)協(xié)議
- 2024-2030年中國舞臺煙霧機行業(yè)發(fā)展前景預(yù)測及投資策略研究報告
- 2024年車身廣告行業(yè)市場深度分析及發(fā)展前景預(yù)測報告
- 2025年不飽和樹脂設(shè)備行業(yè)深度研究分析報告
- 2025年度全球貿(mào)易代理銷售合作協(xié)議
- 《工程電磁場》配套教學(xué)課件
- 遼寧省錦州市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細(xì)及行政區(qū)劃代碼
- 改革開放的歷程(終稿)課件
- 職位管理手冊
- IPQC首檢巡檢操作培訓(xùn)
- 餐飲空間設(shè)計課件ppt
- 肉制品加工技術(shù)完整版ppt課件全套教程(最新)
- (中職)Dreamweaver-CC網(wǎng)頁設(shè)計與制作(3版)電子課件(完整版)
- 行政人事助理崗位月度KPI績效考核表
- 紀(jì)檢監(jiān)察機關(guān)派駐機構(gòu)工作規(guī)則全文詳解PPT
- BP-2C 微機母線保護(hù)裝置技術(shù)說明書 (3)
評論
0/150
提交評論