版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
山西西安博愛國際學(xué)校2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在平行六面體中,AC與BD的交點為O,點M在上,且,則下列向量中與相等的向量是()A. B.C. D.2.已知A,B,C,D是同一球面上的四個點,其中是正三角形,平面,,則該球的表面積為()A. B.C. D.3.關(guān)于的不等式的解集為,則關(guān)于的不等式的解集為A. B.C. D.4.函數(shù)在(0,e]上的最大值為()A.-1 B.1C.0 D.e5.下列說法錯誤的是()A.“若,則”的逆否命題是“若,則”B.“”的否定是”C.“是"”的必要不充分條件D.“或是"”的充要條件6.已知拋物線y2=4x的焦點為F,定點,M為拋物線上一點,則|MA|+|MF|的最小值為()A.3 B.4C.5 D.67.若隨機事件滿足,,,則事件與的關(guān)系是()A.互斥 B.相互獨立C.互為對立 D.互斥且獨立8.直線(t為參數(shù))被圓所截得的弦長為()A. B.C. D.9.在流行病學(xué)中,基本傳染數(shù)是指在沒有外力介入,同時所有人都沒有免疫力的情況下,一個感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.假設(shè)某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過1000人大約需要()(初始感染者傳染個人為第一輪傳染,這個人每人再傳染個人為第二輪傳染)A.20天 B.24天C.28天 D.32天10.為了防控新冠病毒肺炎疫情,某市疾控中心檢測人員對外來入市人員進行核酸檢測,人員甲、乙均被檢測.設(shè)命題為“甲核酸檢測結(jié)果為陰性”,命題為“乙核酸檢測結(jié)果為陰性”,則命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為()A. B.C. D.11.有3個興趣小組,甲、乙兩位同學(xué)各自參加其中一個小組,每位同學(xué)參加各個小組的可能性相同,則這兩位同學(xué)參加同一個興趣小組的概率為A. B.C. D.12.設(shè)命題甲:,命題乙:直線與直線平行,則()A.甲是乙的充分不必要條件 B.甲是乙的必要不充分條件C.甲是乙的充要條件 D.甲是乙的既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則______14.設(shè)f(x)=xlnx,若f′(x0)=2,則x0=________15.已知,且,則的最小值為____________16.設(shè)等差數(shù)列{an}的前n項和為Sn,且S2020>0,S2021<0,則當(dāng)n=_____________時,Sn最大.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓上的點到左、右焦點、的距離之和為4,且右頂點A到右焦點的距離為1.(1)求橢圓的方程;(2)直線與橢圓交于不同兩點,,記的面積為,當(dāng)時求的值.18.(12分)已知直線,半徑為的圓與相切,圓心在軸上且在直線的右上方.(1)求圓的方程;(2)過點的直線與圓交于兩點在軸上方),問在軸正半軸上是否存在定點,使得軸平分?若存在,請求出點的坐標(biāo);若不存在,請說明理由.19.(12分)設(shè)圓的圓心為A,直線l過點且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E(1)判斷與題中圓A的半徑的大小關(guān)系,并寫出點E的軌跡方程;(2)過點作斜率為,的兩條直線,分別交點E的軌跡于M,N兩點,且,證明:直線MN必過定點20.(12分)自我國爆發(fā)新冠肺炎疫情以來,各地醫(yī)療單位都加緊了醫(yī)療用品的生產(chǎn).某醫(yī)療器械廠統(tǒng)計了口罩生產(chǎn)車間每名工人的生產(chǎn)速度,并將所得數(shù)據(jù)分成五組并繪制出如圖所示的頻率分布直方圖.已知前四組的頻率成等差數(shù)列,第五組與第二組的頻率相等(1)估計口罩生產(chǎn)車間工人生產(chǎn)速度的中位數(shù)(結(jié)果寫成分?jǐn)?shù)的形式);(2)為了解該車間工人生產(chǎn)速度是否與他們的工作經(jīng)驗有關(guān),現(xiàn)從車間所有工人中隨機抽樣調(diào)查了5名工人的生產(chǎn)速度以及他們的工齡(參加工作的年限),數(shù)據(jù)如下表:工齡x(單位:年)4681012生產(chǎn)速度y(單位:件/小時)4257626267根據(jù)上述數(shù)據(jù)求每名工人的生產(chǎn)速度y關(guān)于他的工齡x的回歸方程,并據(jù)此估計該車間某位有16年工齡的工人的生產(chǎn)速度附:回歸方程中斜率和截距的最小二乘估計公式為:,21.(12分)已知過拋物線的焦點F且斜率為1的直線l交C于A,B兩點,且(1)求拋物線C的方程;(2)求以C的準(zhǔn)線與x軸的交點D為圓心且與直線l相切的圓的方程22.(10分)已知拋物線與直線相切.(1)求該拋物線的方程;(2)在軸的正半軸上,是否存在某個確定的點M,過該點的動直線與拋物線C交于A,B兩點,使得為定值.如果存在,求出點M的坐標(biāo);如果不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)平行六面體的幾何特點,結(jié)合空間向量的線性運算,即可求得結(jié)果.【詳解】因為平行六面體中,點M在上,且故可得故選:D.2、C【解析】由題意畫出幾何體的圖形,把、、、擴展為三棱柱,上下底面中心連線的中點與的距離為球的半徑,由此能求出球的表面積【詳解】把、、、擴展為三棱柱,上下底面中心連線的中點與的距離為球的半徑,,,是正三角形,,,球的表面積為故選:C3、B【解析】設(shè),解集為所以二次函數(shù)圖像開口向下,且與交點為,由韋達(dá)定理得所以的解集為,故選B.4、A【解析】對函數(shù)求導(dǎo),然后求出函數(shù)的單調(diào)區(qū)間,從而可求出函數(shù)的最大值【詳解】由,得,當(dāng)時,,當(dāng),,所以在上單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時,取得最大值,故選:A5、C【解析】利用逆否命題、命題的否定、充分必要性的概念逐一判斷即可.【詳解】對于A,“若,則”的逆否命題是“若,則”,正確;對于B,“”的否定是”,正確;對于C,“”等價于“或,∴“是"”的充分不必要條件,錯誤;對于D,“或是"”的充要條件,正確.故選:C6、B【解析】作出圖象,過點M作準(zhǔn)線的垂線,垂足為H,結(jié)合圖形可得當(dāng)且僅當(dāng)三點M,A,H共線時|MA|+|MH|最小,求解即可【詳解】過點M作準(zhǔn)線的垂線,垂足為H,由拋物線的定義可知|MF|=|MH|,則問題轉(zhuǎn)化為|MA|+|MH|的最小值,結(jié)合圖形可得當(dāng)且僅當(dāng)三點M,A,H共線時|MA|+|MH|最小,其最小值為.故選:B7、B【解析】利用獨立事件,互斥事件和對立事件的定義判斷即可【詳解】解:因為,,又因為,所以有,所以事件與相互獨立,不互斥也不對立故選:B.8、C【解析】求得直線普通方程以及圓的直角坐標(biāo)方程,利用弦長公式即可求得結(jié)果.【詳解】因為直線的參數(shù)方程為:(t為參數(shù)),故其普通方程為,又,根據(jù),故可得,其表示圓心為,半徑的圓,則圓心到直線的距離,則該直線截圓所得弦長為.故選:C.9、B【解析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計算n輪傳染后感染的總?cè)藬?shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經(jīng)過n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個初始感染者增加到1000人大約需要24天,故選:B【點睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運用,尤其需要注意的是,在使用等比數(shù)列的前n項和公式時,應(yīng)該要分類討論,有時還應(yīng)善于運用整體代換思想簡化運算過程10、D【解析】表示出和,直接判斷即可.【詳解】命題為“甲核酸檢測結(jié)果為陰性”,則命題為“甲核酸檢測結(jié)果不是陰性”;命題為“乙核酸檢測結(jié)果為陰性”,則命題為“乙核酸檢測結(jié)果不是陰性”.故命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為.故選D.11、A【解析】每個同學(xué)參加的情形都有3種,故兩個同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A12、A【解析】根據(jù)充分條件和必要條件的定義,結(jié)合兩直線平行的性質(zhì)進行求解即可.【詳解】當(dāng)時,直線的方程為,直線方程為,此時,直線與直線平行,即甲乙;直線和直線平行,則,解得或,即乙甲;則甲是乙的充分不必要條件.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)導(dǎo)數(shù)的定義求解即可【詳解】由,得,所以,故答案為:14、【解析】f(x)=xlnx∴f'(x)=lnx+1則f′(x0)=lnx0+1=2解得:x0=e15、16【解析】根據(jù),且,利用“1”的代換將,轉(zhuǎn)化為,再利用基本不等式求解.【詳解】因為,且,所以,當(dāng)且僅當(dāng),,即時,取等號.所以的最小值為16.故答案為:16【點睛】本題主要考查基本不等式求最值,還考查了運算求解的能力,屬于基礎(chǔ)題.16、1010【解析】先由S2020>0,S2021<0,判斷出,,即可得到答案.【詳解】等差數(shù)列{an}的前n項和為,所以,因為1+2020=1010+1011,所以,所以.,所以,所以當(dāng)n=1010時,Sn最大.故答案為:1010.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意得到,,再根據(jù)求解即可.(2)首先設(shè),,再根據(jù)求解即可.【小問1詳解】由題意,,因為右頂點到右焦點的距離為,即,所以,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè),,且根據(jù)橢圓的對稱性得,聯(lián)立方程組,整理得,解得,因為的面積為3,可得,解得.18、(1);(2)存在,.【解析】(1)設(shè)出圓心,根據(jù)圓心到直線距離等于半徑列方程求出的值可得圓心坐標(biāo),進而可得圓的方程;(2)由題可設(shè)直線的方程為,與圓的方程聯(lián)立,利用韋達(dá)定理及可得,即得.【小問1詳解】由已知可設(shè)圓心,則,解得或(舍).所以圓.【小問2詳解】由題可設(shè)直線的方程為,由,得到:顯然成立,所以.①若軸平分,則,所以:,整理得:,將①代入整理得對任意的恒成立,則.∴存在點為時,使得軸平分.19、(1)與半徑相等,(2)證明見解析【解析】(1)依據(jù)橢圓定義去求點E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進行討論,由設(shè)而不求法把條件轉(zhuǎn)化為直線MN過定點的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因為,故E的軌跡為以A,B為焦點的橢圓(不包括左右頂點),且有,,即,,,則點E的軌跡方程為;【小問2詳解】當(dāng)直線MN斜率不存在時,設(shè)直線方程為,則,,,,則,∴,此時直線MN的方程為當(dāng)直線MN斜率存在時,設(shè)直線方程為:,與橢圓方程聯(lián)立:,得,設(shè),,有則將*式代入化簡可得:,即,∴,此時直線MN:,恒過定點又直線MN斜率不存在時,直線MN:也過,故直線MN過定點.【點睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。20、(1)(2)80件/小時【解析】(1)先利用等差數(shù)列的通項公式和頻率分布直方圖各矩形的面積之和為1求出各組頻率,再利用頻率分布直方圖求中位數(shù);(2)先求出、,利用最小二乘法求出回歸直線方程,再進行預(yù)測其生產(chǎn)速度.【小問1詳解】解:設(shè)前4組的頻率分別為,,,,公差為,由頻率分布直方圖,得,即,解得,則,,所以中位數(shù)為.【小問2詳解】解:由題意,得,,由所給公式,得,,所以回歸直線方程為,則當(dāng)時,,即估計該車間某位有16年工齡的工人的生產(chǎn)速度為80件/小時.21、(1);(2)【解析】(1)首先表示出直線l的方程,再聯(lián)立直線與拋物線方程,消去,列出韋達(dá)定理,再根據(jù)焦點弦公式計算可得;(2)由(1)可得,再利用點到直線的距離求出半徑,即可求出圓的方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度法律服務(wù)機構(gòu)兼職律師服務(wù)合同3篇
- 2025年度公司簽約帶貨主播虛擬偶像合作合同3篇
- 二零二五年度養(yǎng)殖場養(yǎng)殖場養(yǎng)殖技術(shù)交流與合作合同3篇
- 2025年度建筑工程施工現(xiàn)場管理三方協(xié)議3篇
- 二零二五年度全新碼頭租賃合同及港口貨物裝卸服務(wù)協(xié)議3篇
- 2025年度XX教育機構(gòu)二零二五年度教育貸款協(xié)議3篇
- 2025年度大學(xué)畢業(yè)生就業(yè)就業(yè)能力評估與培訓(xùn)合同3篇
- 2025年度高新技術(shù)產(chǎn)業(yè)競業(yè)禁止勞動合同范本解析3篇
- 2025年度高效農(nóng)業(yè)機械買賣合同協(xié)議書模板3篇
- 2025年度寵物店專業(yè)連鎖品牌形象設(shè)計與授權(quán)合同3篇
- 布氏、韋氏、洛氏硬度換算表
- 鋼筋混凝土地下通道課程設(shè)計
- 韓流對中國文化的影響課件
- 檢驗檢測服務(wù)公司市場營銷計劃
- 醫(yī)務(wù)人員外出進修流程圖
- DB32∕T 2349-2013 楊樹一元立木材積表
- 昌樂二中271高效課堂培訓(xùn)與評價ppt課件
- 顫?。ㄅ两鹕。┲嗅t(yī)護理常規(guī)
- 豬場名詞及指標(biāo)講義
- T∕CHTS 10040-2021 公路無機結(jié)合料穩(wěn)定粒料基層振動法施工技術(shù)指南
- 集團后備人才培養(yǎng)方案
評論
0/150
提交評論