版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省重點中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復(fù)數(shù)滿足,則()A. B. C. D.2.已知,是函數(shù)圖像上不同的兩點,若曲線在點,處的切線重合,則實數(shù)的最小值是()A. B. C. D.13.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.5.已知函數(shù)的圖像向右平移個單位長度后,得到的圖像關(guān)于軸對稱,,當取得最小值時,函數(shù)的解析式為()A. B.C. D.6.已知橢圓,直線與直線相交于點,且點在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.7.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.8.已知定義在上的函數(shù)的周期為4,當時,,則()A. B. C. D.9.拋物線的焦點為,點是上一點,,則()A. B. C. D.10.“”是“函數(shù)的圖象關(guān)于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.12.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義在R上的函數(shù)滿足:①對任意的,都有;②當時,,則函數(shù)的解析式可以是______________.14.平行四邊形中,,為邊上一點(不與重合),將平行四邊形沿折起,使五點均在一個球面上,當四棱錐體積最大時,球的表面積為________.15.過直線上一點作圓的兩條切線,切點分別為,,則的最小值是______.16.已知,復(fù)數(shù)且(為虛數(shù)單位),則__________,_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調(diào)整眼及頭部的血液循環(huán),調(diào)節(jié)肌肉,改善眼的疲勞,達到預(yù)防近視等眼部疾病的目的.某學(xué)校為了調(diào)查推廣眼保健操對改善學(xué)生視力的效果,在應(yīng)屆高三的全體800名學(xué)生中隨機抽取了100名學(xué)生進行視力檢查,并得到如圖的頻率分布直方圖.(1)若直方圖中后三組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以上的人數(shù);(2)為了研究學(xué)生的視力與眼保健操是否有關(guān)系,對年級不做眼保健操和堅持做眼保健操的學(xué)生進行了調(diào)查,得到下表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關(guān)系?(3)在(2)中調(diào)查的100名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取8人,進一步調(diào)查他們良好的護眼習(xí)慣,在這8人中任取2人,記堅持做眼保健操的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.附:0.100.050.0250.0100.005k2.7063.8415.0246.6357.87918.(12分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點.求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.19.(12分)的內(nèi)角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.20.(12分)在平面直角坐標系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點.圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當線段AB的長度最小時,求s的值.21.(12分)甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數(shù)記為.(1)求的分布列及數(shù)學(xué)期望;(2)在概率(=0,1,2,3)中,若的值最大,求實數(shù)的取值范圍.22.(10分)在中,內(nèi)角所對的邊分別為,已知,且.(I)求角的大小;(Ⅱ)若,求面積的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意得,,求解即可.【詳解】因為,所以.故選:B.【點睛】本題考查復(fù)數(shù)的四則運算,考查運算求解能力,屬于基礎(chǔ)題.2、B【解析】
先根據(jù)導(dǎo)數(shù)的幾何意義寫出在兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹,從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當時,,則;當時,則.設(shè)為函數(shù)圖像上的兩點,當或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設(shè)則,由可得則當時,的最大值為.則在上單調(diào)遞減,則.故選:B.【點睛】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點是求出和的函數(shù)關(guān)系式.本題的易錯點是計算.3、A【解析】
由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點睛】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.4、A【解析】
設(shè),延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設(shè),延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.【點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.5、A【解析】
先求出平移后的函數(shù)解析式,結(jié)合圖像的對稱性和得到A和.【詳解】因為關(guān)于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時需注意x的系數(shù)和平移量之間的關(guān)系.6、A【解析】
先求得橢圓焦點坐標,判斷出直線過橢圓的焦點.然后判斷出,判斷出點的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡后求得離心率的取值范圍.【詳解】設(shè)是橢圓的焦點,所以.直線過點,直線過點,由于,所以,所以點的軌跡是以為直徑的圓.由于點在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點睛】本小題主要考查直線與直線的位置關(guān)系,考查動點軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.7、C【解析】
以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設(shè)正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設(shè)直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結(jié)合思想和向量法的應(yīng)用,屬于中檔題.8、A【解析】
因為給出的解析式只適用于,所以利用周期性,將轉(zhuǎn)化為,再與一起代入解析式,利用對數(shù)恒等式和對數(shù)的運算性質(zhì),即可求得結(jié)果.【詳解】定義在上的函數(shù)的周期為4,當時,,,,.故選:A.【點睛】本題考查了利用函數(shù)的周期性求函數(shù)值,對數(shù)的運算性質(zhì),屬于中檔題.9、B【解析】
根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.10、A【解析】
先求解函數(shù)的圖象關(guān)于直線對稱的等價條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對稱,則,解得,故“”是“函數(shù)的圖象關(guān)于直線對稱”的充分不必要條件.故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學(xué)生邏輯推理,概念理解,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.11、C【解析】
先計算出總的基本事件的個數(shù),再計算出兩張都沒獲獎的個數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計算能力,屬于基礎(chǔ)題.12、D【解析】
根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對稱,排除AB,計算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【點睛】本題考查了函數(shù)圖像的識別,確定函數(shù)關(guān)于1,0中心對稱是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、(或,答案不唯一)【解析】
由可得是奇函數(shù),再由時,可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數(shù),由時,,知或等,答案不唯一.故答案為:(或,答案不唯一).【點睛】本題考查抽象函數(shù)的性質(zhì),涉及到由表達式確定函數(shù)奇偶性,是一道開放性的題,難度不大.14、【解析】
依題意可得、、、四點共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當且僅當面面時體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、、、四點共圓,所以因為,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當面面時,取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【點睛】本題考查多面體的外接球的相關(guān)計算,正弦定理、余弦定理的應(yīng)用,屬于中檔題.15、【解析】
由切線的性質(zhì),可知,切由直角三角形PAO,PBO,即可設(shè),進而表示,由圖像觀察可知進而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數(shù)求出最小值.【詳解】由題可知,,設(shè),由切線的性質(zhì)可知,則顯然,則或(舍去)因為令,則,由雙勾函數(shù)單調(diào)性可知其在區(qū)間上單調(diào)遞增,所以故答案為:【點睛】本題考查在以直線與圓的位置關(guān)系為背景下求向量數(shù)量積的最值問題,應(yīng)用函數(shù)形式表示所求式子,進而利用分析函數(shù)單調(diào)性或基本不等式求得最值,屬于較難題.16、【解析】∵復(fù)數(shù)且∴∴∴∴,故答案為,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關(guān)系(3)詳見解析【解析】
(1)由題意可計算后三組的頻數(shù)的總數(shù),由其成等差數(shù)列可得后三組頻數(shù),可得視力在5.0以上的頻率,可得全年級視力在5.0以上的的人數(shù);(2)由題中數(shù)據(jù)計算的值,對照臨界值表可得答案;(3)由題意可計算出這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,可得X可取0,1,2,分別計算出其概率,列出分布列,可得其數(shù)學(xué)期望.【詳解】解:(1)由圖可知,第一組有3人,第二組7人,第三組27人,因為后三組的頻數(shù)成等差數(shù)列,共有(人)所以后三組頻數(shù)依次為24,21,18,所以視力在5.0以上的頻率為0.18,故全年級視力在5.0以上的的人數(shù)約為人(2),因此能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關(guān)系.(3)調(diào)查的100名學(xué)生中不近視的共有24人,從中抽取8人,抽樣比為,這8人中不做眼保健操和堅持做眼保健操的分別有2人和6人,X可取0,1,2,,X的分布列X012PX的數(shù)學(xué)期望.【點睛】本題主要考查頻率分布直方圖,獨立性檢測及離散型隨機變量的期望與方差等相關(guān)知識,考查學(xué)生分析數(shù)據(jù)與處理數(shù)據(jù)的能力,屬于中檔題.18、(1)詳見解析;(2)詳見解析.【解析】
(1)利用平行四邊形的方法,證明平面.(2)通過證明平面,由此證得.【詳解】(1)設(shè)是中點,連接,由于是中點,所以且,而且,所以與平行且相等,所以四邊形是平行四邊形,所以,由于平面,平面,所以平面.(2)連接,由于直三棱柱中,而,,所以平面,所以,由于,所以.由于四邊形是矩形且,所以四邊形是正方形,所以,由于,所以平面,所以.【點睛】本小題主要考查線面平行的證明,考查線面垂直的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1);(2).【解析】
(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因為為的中線,所以,兩邊同時平方可得,故.因為,所以.所以的面積.【點睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時也考查了向量在解三角形中的運用,屬于中檔題.20、(1),(2).【解析】
根據(jù)題意設(shè),可得PF的方程,根據(jù)距離即可求出;點Q處的切線的斜率存在,由對稱性不妨設(shè),根據(jù)導(dǎo)數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值.【詳解】因為拋物線C的方程為,所以F的坐標為,設(shè),因為圓M與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點,則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設(shè),,,由知,點Q處的切線的斜率存在,由對稱性不妨設(shè),由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當時,取得極小值也是最小值,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋戶外景觀停車場施工合同
- 圖書館木門安裝合同
- 設(shè)備租賃合同:科研儀器租賃模板
- 汕頭賽車場租賃合同
- 太陽能工程監(jiān)理協(xié)議
- 會計師事務(wù)所續(xù)租合同
- 員工離職后知識產(chǎn)權(quán)協(xié)議書
- 石油企業(yè)安全員聘用合同模板
- 藝術(shù)園區(qū)共建租賃合同
- 能源供應(yīng)合同備案規(guī)則
- 醫(yī)院保安服務(wù)應(yīng)急預(yù)案
- 幼兒園大班師德師風(fēng)案例及分析
- 2023-2024年《個人墊資合同樣本范本模板》
- 項目工程師個人工作總結(jié)
- 第四單元 美洲樂聲-《紅河谷》課件 2023-2024學(xué)年人音版初中音樂七年級下冊
- 學(xué)習(xí)任務(wù)群視域下小學(xué)語文整本書閱讀教學(xué)策略
- 砌磚工程實訓(xùn)總結(jié)報告
- MOOC 神經(jīng)病學(xué)-西安交通大學(xué) 中國大學(xué)慕課答案
- 石油化學(xué)智慧樹知到期末考試答案2024年
- (正式版)SHT 3227-2024 石油化工裝置固定水噴霧和水(泡沫)噴淋滅火系統(tǒng)技術(shù)標準
- 醫(yī)養(yǎng)結(jié)合機構(gòu)服務(wù)質(zhì)量評價標準(二級醫(yī)養(yǎng)結(jié)合機構(gòu))
評論
0/150
提交評論