江蘇省蘇州市新草橋中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第1頁
江蘇省蘇州市新草橋中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第2頁
江蘇省蘇州市新草橋中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第3頁
江蘇省蘇州市新草橋中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第4頁
江蘇省蘇州市新草橋中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省蘇州市新草橋中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線:恒過點,過點作直線與圓:相交于A,B兩點,則的最小值為()A. B.2C.4 D.2.等差數(shù)列的前項和為,若,,則()A.12 B.18C.21 D.273.下列命題錯誤的是()A,B.命題“”的否定是“”C.設(shè),則“且”是“”的必要不充分條件D.設(shè),則“”是“”的必要不充分條件4.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點的中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg5.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點,且線段的中點為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.6.已知拋物線上的點到該拋物線焦點的距離為,則拋物線的方程是()A. B.C. D.7.已知等差數(shù)列的前項和為,,公差,.若取得最大值,則的值為()A.6或7 B.7或8C.8或9 D.9或108.已知橢圓+=1(a>b>0)的右焦點為F(3,0),過點F的直線交橢圓于A、B兩點.若AB的中點坐標(biāo)為(1,-1),則E的方程為A.+=1 B.+=1C.+=1 D.+=19.已知圓錐的表面積為,且它的側(cè)面展開圖是一個半圓,則這個圓錐的體積為()A. B.C. D.10.若,則()A.22 B.19C.-20 D.-1911.若復(fù)數(shù)的模為2,則的最大值為()A. B.C. D.12.已知直線過拋物線C的焦點,且與C的對稱軸垂直,與C交于A,B兩點,P為C的準(zhǔn)線上一點,若的面積為36,則等于()A.36 B.24C.12 D.6二、填空題:本題共4小題,每小題5分,共20分。13.如圖的形狀出現(xiàn)存南宋數(shù)學(xué)家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最一上層有1個球,第二層有3個球,第三層有6個球……,設(shè)從上至下各層球數(shù)構(gòu)成一個數(shù)列則___________.(填數(shù)字)14.命題為假命題,則實數(shù)的取值范圍為_____________.15.若方程表示的曲線是圓,則實數(shù)的k取值范圍是___________.16.設(shè)集合,把集合中的元素按從小到大依次排列,構(gòu)成數(shù)列,求數(shù)列的前項和___三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,(1)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;(2)當(dāng)時,,求實數(shù)a的取值范圍18.(12分)在等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和.19.(12分)已知等比數(shù)列的前項和為,,.?dāng)?shù)列的前項和為,且,(1)分別求數(shù)列和的通項公式;(2)若,為數(shù)列的前項和,是否存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列?若存在,求出所有滿足條件的,,的值;若不存在,說明理由20.(12分)如圖,在棱長為3的正方體中,分別是上的點且(1)求證:;(2)求平面與平面的夾角的余弦值21.(12分)已知等差數(shù)列中,,前5項的和為,數(shù)列滿足,(1)求數(shù)列,的通項公式;(2)記,求數(shù)列的前n項和22.(10分)已知函數(shù)在區(qū)間上有最大值和最小值(1)求實數(shù)、的值;(2)設(shè),若不等式,在上恒成立,求實數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)將最小值問題轉(zhuǎn)化為d取得最大值問題,然后結(jié)合圖形可解.【詳解】將,變形為,故直線恒過點,圓心,半徑,已知點P在圓內(nèi),過點作直線與圓相交于A,兩點,記圓心到直線的距離為d,則,所以當(dāng)d取得最大值時,有最小值,結(jié)合圖形易知,當(dāng)直線與線段垂直的時候,d取得最大值,即取得最小值,此時,所以.故選:A.2、B【解析】根據(jù)等差數(shù)列的前項和為具有的性質(zhì),即成等差數(shù)列,由此列出等式,求得答案.【詳解】因為為等差數(shù)列的前n項和,且,,所以成等差數(shù)列,所以,即,解得=18,故選:B.3、C【解析】根據(jù)題意,對四個選項一一進行分析,舉出例子當(dāng)時,,即可判斷A選項;根據(jù)特稱命題的否定為全稱命題,可判斷B選項;根據(jù)充分條件和必要條件的定義,即可判斷CD選項.【詳解】解:對于A,當(dāng)時,,,故A正確;對于B,根據(jù)特稱命題的否定為全稱命題,得“”的否定是“”,故B正確;對于C,當(dāng)且時,成立;當(dāng)時,卻不一定有且,如,因此“且”是“”的充分不必要條件,故C錯誤;對于D,因為當(dāng)時,有可能等于0,當(dāng)時,必有,所以“”是“”的必要不充分條件,故D正確.故選:C.4、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測其體重約為0.85×170﹣85.71=58.79kg,D錯誤故選D5、C【解析】設(shè),代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設(shè),則,相減得,∴,又線段的中點為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點睛】方法點睛:本題考查求雙曲線的漸近線方程,已知弦的中點(或涉及到中點),可設(shè)弦兩端點的坐標(biāo),代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點坐標(biāo),有.這種方法叫點差法6、B【解析】由拋物線知識得出準(zhǔn)線方程,再由點到焦點的距離等于其到準(zhǔn)線的距離求出,從而得出方程.【詳解】由題意知,則準(zhǔn)線為,點到焦點的距離等于其到準(zhǔn)線的距離,即,∴,則故選:B.7、B【解析】根據(jù)題意可知等差數(shù)列是,單調(diào)遞減數(shù)列,其中,由此可知,據(jù)此即可求出結(jié)果.【詳解】在等差數(shù)列中,所以,所以,即,又等差數(shù)列中,公差,所以等差數(shù)列是單調(diào)遞減數(shù)列,所以,所以等差數(shù)列的前項和為取得最大值,則的值為7或8.故選:B.8、D【解析】設(shè)、,所以,運用點差法,所以直線的斜率為,設(shè)直線方程為,聯(lián)立直線與橢圓的方程,所以;又因為,解得.【考點定位】本題考查直線與圓錐曲線的關(guān)系,考查學(xué)生的化歸與轉(zhuǎn)化能力.9、D【解析】設(shè)圓錐的半徑為,母線長,根據(jù)已知條件求出、的值,可求得該圓錐的高,利用錐體的體積公式可求得結(jié)果.【詳解】設(shè)圓錐的半徑為,母線長,因為側(cè)面展開圖是一個半圓,則,即,又圓錐的表面積為,則,解得,,則圓錐的高,所以圓錐的體積,故選:D.10、C【解析】將所求進行變形可得,根據(jù)二項式定理展開式,即可求得答案.【詳解】由題意得所以.故選:C11、A【解析】由題意得,表示以為圓心,2為半徑的圓,表示過原點和圓上的點的直線的斜率,由圖可知,當(dāng)直線與圓相切時,取得最值,然后求出切線的斜率即可【詳解】因為復(fù)數(shù)的模為2,所以,所以其表示以為圓心,2為半徑的圓,如圖所示,表示過原點和圓上的點的直線的斜率,由圖可知,當(dāng)直線與圓相切時,取得最值,設(shè)切線方程為,則,解得,所以的最大值為,故選:A12、C【解析】設(shè)拋物線方程為,根據(jù)題意由求解.【詳解】設(shè)拋物線方程為:,因為直線過拋物線C的焦點,且與C的對稱軸垂直,所以,又P為C的準(zhǔn)線上一點,所以點P到直線AB的距離為p,所以,解得,所以,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題中給出的圖形,結(jié)合題意找到各層球的數(shù)列與層數(shù)的關(guān)系,得到,即可得解【詳解】解:由題意可知,,,,,,故,所以,故答案為:14、【解析】依據(jù)題意列出關(guān)于實數(shù)的不等式,即可求得實數(shù)的取值范圍.【詳解】命題為假命題,則為真命題則判別式,解之得故答案為:15、【解析】根據(jù)二元二次方程表示圓的條件求解【詳解】由題意,故答案為:16、【解析】由等差數(shù)列和等比數(shù)列的通項公式,可得,由不在集合中,在集合中,也在集合中,推得不在數(shù)列的前50項內(nèi),則數(shù)列的前50項中包括的前48項和數(shù)列中的3和27,結(jié)合等差數(shù)列的求和公式,即可求解.【詳解】由題意,集合構(gòu)成數(shù)列是首項為1,公差為4的等差數(shù)列,集合構(gòu)成數(shù)列是首項為1,公比為3的等比數(shù)列,可得,又由不在集合中,在集合中,也在集合中,因為,解得,此時,所以不在數(shù)列的前50項內(nèi),則數(shù)列的前50項的和為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再解導(dǎo)函數(shù)的不等式,即可求出函數(shù)的單調(diào)遞減區(qū)間;(2)依題意可得當(dāng)時,當(dāng)時,顯然成立,當(dāng)時只需,參變分離得到,令,,利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,即可求出參數(shù)的取值范圍;【小問1詳解】解:當(dāng)時定義域為,所以,令,解得或,令,解得,所以的單調(diào)遞減區(qū)間為;【小問2詳解】解:由,即,即,當(dāng)時顯然成立,當(dāng)時,只需,即,令,,則,所以在上單調(diào)遞減,所以,所以,故實數(shù)的取值范圍為.18、(1)(2)【解析】(1)根據(jù)已知條件求得,由此求得數(shù)列的通項公式.(2)令,分和去掉絕對值,根據(jù)等差數(shù)列的求和公式求得.【小問1詳解】設(shè)等差數(shù)列的公差為,∵,,所以,所以,則.【小問2詳解】令,解得,當(dāng)時,,,當(dāng)時,.19、(1),;(2)不存在,理由見解析.【解析】(1)利用數(shù)列為等比數(shù)列,將已知的等式利用首項和公比表示,得到一個方程組,求解即可得到首項和公比,結(jié)合等比數(shù)列的通項公式即可求出;將已知的等式變形,得到數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式求出,再結(jié)合數(shù)列的第項與前項和之間的關(guān)系進行求解,即可得到;(2)先利用等比數(shù)列求和公式求出,從而得到的表達式,然后利用裂項相消求和法求出,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,利用等比中項、等差中項以及進行化簡變形,得到假設(shè)不成立,故可得到答案【詳解】(1)因為數(shù)列為等比數(shù)列,設(shè)首項為,公比為,由題意可知,所以,所以,由②可得,即,所以或2,因為,所以,所以,所以,由,可得,所以數(shù)列為等差數(shù)列,首項為,公差為1,故,則,當(dāng)時,,當(dāng)時,也適合上式,故(2)由,可得,所以,所以,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,則有,所以,則,即,因為,所以,即,所以,所以,則,所以,則,所以,即,所以,這與已知的,,互不相等矛盾,故不存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列【點睛】裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導(dǎo)致計算結(jié)果錯誤.20、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系后得到相關(guān)向量,再運用數(shù)量積證明;(2)求出相關(guān)平面的法向量,再運用夾角公式計算即可.【小問1詳解】建立如下圖所示的空間直角坐標(biāo)系:,,,,,∴,故.【小問2詳解】,,,設(shè)平面的一個法向量為,由,令,則,取平面的一個法向量為,設(shè)平面與平面夾角為,易知:為銳角,故,即平面與平面夾角的余弦值為.21、(1),;(2).【解析】(1)利用等差數(shù)列求和公式可得,進而可得,再利用累加法可求,即得;(2)由題可得,然后利用分組求和法即得.【小問1詳解】設(shè)公差為d,由題設(shè)可得,解得,所以;當(dāng)時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論