2025屆重慶市萬州三中高二上數(shù)學(xué)期末調(diào)研試題含解析_第1頁
2025屆重慶市萬州三中高二上數(shù)學(xué)期末調(diào)研試題含解析_第2頁
2025屆重慶市萬州三中高二上數(shù)學(xué)期末調(diào)研試題含解析_第3頁
2025屆重慶市萬州三中高二上數(shù)學(xué)期末調(diào)研試題含解析_第4頁
2025屆重慶市萬州三中高二上數(shù)學(xué)期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆重慶市萬州三中高二上數(shù)學(xué)期末調(diào)研試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列中,,且構(gòu)成等比數(shù)列,則公差等于()A.0 B.3C. D.0或32.已知空間向量,則()A. B.C. D.3.焦點坐標(biāo)為的拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.4.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子研究數(shù),他們根據(jù)沙粒和石子所排列的形狀把數(shù)分成許多類,若:三角形數(shù)、、、、,正方形數(shù)、、、、等等.如圖所示為正五邊形數(shù),將五邊形數(shù)按從小到大的順序排列成數(shù)列,則此數(shù)列的第4項為()A. B.C. D.5.已知數(shù)列滿足,,令,若對于任意不等式恒成立,則實數(shù)t的取值范圍為()A. B.C. D.6.f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時,f(x)g(x)+f(x)g(x)<0且f(﹣1)=0則不等式f(x)g(x)<0的解集為A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)7.是數(shù)列,,,-17,中的第幾項()A第項 B.第項C.第項 D.第項8.若函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是A. B.C. D.9.已知直線經(jīng)過拋物線的焦點,且與該拋物線交于,兩點,若滿足,則直線的方程為()A. B.C. D.10.已知直線:恒過點,過點作直線與圓:相交于A,B兩點,則的最小值為()A. B.2C.4 D.11.算盤是中國古代的一項重要發(fā)明.現(xiàn)有一種算盤(如圖1),共兩檔,自右向左分別表示個位和十位,檔中橫以梁,梁上一珠撥下,記作數(shù)字5,梁下五珠,上撥一珠記作數(shù)字1(如圖2中算盤表示整數(shù)51).如果撥動圖1算盤中的兩枚算珠,可以表示不同整數(shù)的個數(shù)為()A.8 B.10C.15 D.1612.在等差數(shù)列中,其前項和為.若,是方程的兩個根,那么的值為()A.44 B.C.66 D.二、填空題:本題共4小題,每小題5分,共20分。13.光線從橢圓的一個焦點發(fā)出,被橢圓反射后會經(jīng)過橢圓的另一個焦點;光線從雙曲線的一個焦點發(fā)出,被雙曲線反射后的反射光線等效于從另一個焦點射出.如圖,一個光學(xué)裝置由有公共焦點的橢圓與雙曲線構(gòu)成,現(xiàn)一光線從左焦點發(fā)出,依次經(jīng)與反射,又回到了點,歷時秒;若將裝置中的去掉,此光線從點發(fā)出,經(jīng)兩次反射后又回到了點,歷時秒;若,則與的離心率之比為________14.若圓心坐標(biāo)為圓被直線截得的弦長為,則圓的半徑為______.15.以雙曲線的右焦點為圓心,為半徑的圓與的一條漸近線交于兩點,若,則雙曲線的離心率為_________16.若向量,且夾角的余弦值為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線的左、右焦點分別為,,動點M滿足(1)求動點M的軌跡方程;(2)若動點M在雙曲線C上,設(shè)雙曲線C的左支上有兩個不同的點P,Q,點,且,直線NQ與雙曲線C交于另一點B.證明:動直線PB經(jīng)過定點18.(12分)已知橢圓F:經(jīng)過點且離心率為,直線和是分別過橢圓F的左、右焦點的兩條動直線,它們與橢圓分別相交于點A、B和C、D,O為坐標(biāo)原點,直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F標(biāo)準(zhǔn)方程(2)是否存在定點P,Q,使得為定值.若存在,請求出P、Q的坐標(biāo),若不存在,請說明理由19.(12分)設(shè)函數(shù),且存在兩個極值點、,其中.(1)求實數(shù)的取值范圍;(2)若恒成立,求最小值.20.(12分)已知圓經(jīng)過坐標(biāo)原點和點,且圓心在軸上.(1)求圓的方程;(2)已知直線與圓相交于A、B兩點,求所得弦長的值.21.(12分)如圖,三棱錐中,,,,,,點是PA的中點,點D是AC的中點,點N在PB上,且.(1)證明:平面CMN;(2)求平面MNC與平面ABC所成角的余弦值.22.(10分)已知數(shù)列是公差為2的等差數(shù)列,它的前n項和為,且,,成等比數(shù)列(1)求的通項公式(2)求數(shù)列的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù),且構(gòu)成等比數(shù)列,利用“”求解.【詳解】設(shè)等差數(shù)列的公差為d,因為,且構(gòu)成等比數(shù)列,所以,解得,故選:D2、A【解析】求得,即可得出.【詳解】,,,.故選:A.3、D【解析】依次確定選項中各個拋物線的焦點坐標(biāo)即可.【詳解】對于A,的焦點坐標(biāo)為,A錯誤;對于B,的焦點坐標(biāo)為,B錯誤;對于C,焦點坐標(biāo)為,C錯誤;對于D,的焦點坐標(biāo)為,D正確.故選:D.4、D【解析】根據(jù)前三個五邊形數(shù)可推斷出第四個五邊形數(shù).【詳解】第一個五邊形數(shù)為,第二個五邊形數(shù)為,第三個五邊形數(shù)為,故第四個五邊形數(shù)為.故選:D.5、D【解析】根據(jù)遞推關(guān)系,利用裂項相消法,累加法求出,可得,原不等式轉(zhuǎn)化為恒成立求解即可.【詳解】,,,由累加法可得,又,,符合上式,,,對于任意不等式恒成立,則,解得.故選:D6、A【解析】構(gòu)造函數(shù)h(x)=f(x)g(x),由已知得當(dāng)x<0時,h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因為f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),得函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,得到f(x)g(x)<0不等式的解集【詳解】設(shè)h(x)=f(x)g(x),因為當(dāng)x<0時,f(x)g(x)+f(x)g(x)<0,所以當(dāng)x<0時,h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因為f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),所以函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,因為f(﹣1)=0,所以函數(shù)y=h(x)的大致圖象如下:所以等式f(x)g(x)<0的解集為(﹣1,0)∪(1,+∞)故選A【點睛】本題考查導(dǎo)數(shù)乘法法則、導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系;奇函數(shù)的單調(diào)性在對稱區(qū)間上一致,屬于中檔題7、C【解析】利用等差數(shù)列的通項公式即可求解【詳解】設(shè)數(shù)列,,,,是首項為,公差d=-4的等差數(shù)列{},,令,得故選:C8、D【解析】,∵函數(shù)在區(qū)間單調(diào)遞增,∴在區(qū)間上恒成立.∴,而在區(qū)間上單調(diào)遞減,∴.∴取值范圍是.故選D考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.9、C【解析】求出拋物線的焦點,設(shè)出直線方程,代入拋物線方程,運用韋達(dá)定理和向量坐標(biāo)表示,解得,即可得出直線的方程.【詳解】解:拋物線的焦點,設(shè)直線為,則,整理得,則,.由可得,代入上式即可得,所以,整理得:.故選:C.【點睛】本題考查直線和拋物線的位置關(guān)系,主要考查韋達(dá)定理和向量共線的坐標(biāo)表示,考查運算能力,屬于中檔題.10、A【解析】根據(jù)將最小值問題轉(zhuǎn)化為d取得最大值問題,然后結(jié)合圖形可解.【詳解】將,變形為,故直線恒過點,圓心,半徑,已知點P在圓內(nèi),過點作直線與圓相交于A,兩點,記圓心到直線的距離為d,則,所以當(dāng)d取得最大值時,有最小值,結(jié)合圖形易知,當(dāng)直線與線段垂直的時候,d取得最大值,即取得最小值,此時,所以.故選:A.11、A【解析】根據(jù)給定條件分類探求出撥動兩枚算珠的結(jié)果計算得解.【詳解】撥動圖1算盤中的兩枚算珠,有兩類辦法,由于撥動一枚算珠有梁上、梁下之分,則只在一個檔撥動兩枚算珠共有4種方法,在每一個檔各撥動一枚算珠共有4種方法,由分類加法計數(shù)原理得共有8種方法,所以表示不同整數(shù)的個數(shù)為8.故選:A12、D【解析】由,是方程的兩個根,利用韋達(dá)定理可知與的和,根據(jù)等差數(shù)列的性質(zhì)可得與的和等于,即可求出的值,然后再利用等差數(shù)列的性質(zhì)可知等于的11倍,把的值代入即可求出的值.【詳解】因為,是方程的兩個根,所以,而,所以,則,故選:.二、填空題:本題共4小題,每小題5分,共20分。13、##0.75【解析】根據(jù)橢圓和雙曲線定義用長半軸長和實半軸長表示出撤掉裝置前后的路程,然后由已知可解.【詳解】記橢圓的長半軸長為,雙曲線的實半軸長為,由橢圓和雙曲線的定義有:,得,即,又由橢圓定義知,,因為,所以,即所以.故答案為:14、【解析】利用垂徑定理計算即可.【詳解】設(shè)圓的半徑為,則,得.故答案為:.15、【解析】由題意可得,化簡整理得到,進而可求出結(jié)果.【詳解】因為雙曲線的一個焦點到其一條漸近線為,所有由題意可得,即,則,所以離心率,故答案為:.16、【解析】根據(jù)求解即可.【詳解】,故答案為:【點睛】本題主要考查了求空間中兩個向量的夾角,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)根據(jù)雙曲線的定義求得的值得雙曲線方程;(2)確定垂直于軸,設(shè)直線BP的方程為,設(shè),,則,直線方程代入雙曲線方程,由相交求得范圍,由韋達(dá)定理,利用N、B、Q三點共線,且NQ斜率存在,由斜率相等得出的關(guān)系,代入韋達(dá)定理的結(jié)論可求得的值,從而得直線BP所過定點【小問1詳解】因為,所以,動點M的軌跡是以點、為左、右焦點的雙曲線的左支,則,可得,,所以,點M的軌跡方程為;【小問2詳解】證明:∵,∴直線PQ垂直于x軸,易知,直線BP的斜率存在且不為0,設(shè)直線BP的方程為,設(shè),,則,聯(lián)立,化簡得:,直線與雙曲線左支、右支各有一個交點,需滿足或,∴,,又,又N、B、Q三點共線,且NQ斜率存在,∴,即,∴,∴,∴,化簡得:,∴,∴,即,滿足判別式大于0,即直線BP方程為,所以直線BP過定點18、(1);(2)存在點,使得為定值.【解析】(1)設(shè),,,結(jié)合條件即求;(2)由題可設(shè)直線方程,利用韋達(dá)定理法可得,再結(jié)合條件可得點的軌跡方程為,然后利用橢圓的定義即得結(jié)論.【小問1詳解】設(shè),,,橢圓方程為:,橢圓過點,,解得t=1,所以橢圓F的方程是【小問2詳解】由題可得焦點的坐標(biāo)分別為,當(dāng)直線AB或CD的斜率不存在時,點M的坐標(biāo)為或,當(dāng)直線AB和CD的斜率都存在時,設(shè)斜率分別為,點,直線AB為,聯(lián)立,得則,,同理可得,,因為,所以,化簡得由題意,知,所以設(shè)點,則,所以,化簡得,當(dāng)直線或的斜率不存在時,點M的坐標(biāo)為或,也滿足此方程所以點在橢圓上,根據(jù)橢圓定義可知,存在定點,使得為定值【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是利用韋達(dá)定理法及題設(shè)條件求出點M的軌跡方程,再結(jié)合橢圓的定義,從而問題得到解決.19、(1)(2)【解析】(1)存在兩個極值點,等價于其導(dǎo)函數(shù)有兩個相異零點;(2)適當(dāng)構(gòu)造函數(shù),并注意與關(guān)系,轉(zhuǎn)化為函數(shù)求最大值問題,即可求得的范圍.【小問1詳解】(),,函數(shù)存在兩個極值點、,且,關(guān)于的方程,即在內(nèi)有兩個不等實根,令,,即,,實數(shù)的取值范圍是.【小問2詳解】函數(shù)在上有兩個極值點,由(1)可得,由,得,則,,,,,,,,令,則且,令,,,再設(shè),則,,,即在上是減函數(shù),(1),,在上是增函數(shù),(1),,恒成立,恒成立,,的最小值為.【點睛】關(guān)鍵點點睛:本題考查導(dǎo)函數(shù),函數(shù)的單調(diào)性,最值,不等式證明,考查學(xué)生分析解決問題的能力,解題的關(guān)鍵是將恒成立,轉(zhuǎn)化為恒成立,化簡,令,則化為,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求出其最大值即可,屬于較難題20、(1);(2).【解析】(1)根據(jù)條件可以確定圓心坐標(biāo)和半徑,寫出圓的方程;(2)先求圓心到直線的距離,結(jié)合勾股定理可求弦長.【詳解】(1)由題意可得,圓心為(2,0),半徑為2.則圓的方程為;(2)圓心(2,0)到l的距離為d,=1,.【點睛】圓的方程求解方法:(1)直接法:確定圓心,求出半徑,寫出方程;(2)待定系數(shù)法:設(shè)出圓的方程,可以是標(biāo)準(zhǔn)方程也可以是一般式方程,根據(jù)條件列出方程,求解系數(shù)即可.21、(1)證明見解析(2)【解析】建立如圖所示空間直角坐標(biāo)系,得到相關(guān)點和相關(guān)向量的坐標(biāo),(1)求出平面的法向量,利用證明即可;(2)由(1)知平面的法向量,再求平面的法向量,利用向量的夾角公式即可求解.【小問1詳解】證明:三棱錐中,,,∴分別以,,,,軸建立如圖所示空間直角坐標(biāo)系∵,,點M是PA的中點,點D是AC的中點,點N在PB上且

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論