版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海市華實(shí)高中2025屆高二數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“方程表示雙曲線”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知點(diǎn)A、是拋物線:上的兩點(diǎn),且線段過拋物線的焦點(diǎn),若的中點(diǎn)到軸的距離為3,則()A.3 B.4C.6 D.83.函數(shù)的定義域為,其導(dǎo)函數(shù)的圖像如圖所示,則函數(shù)極值點(diǎn)的個數(shù)為()A.2 B.3C.4 D.54.為了防控新冠病毒肺炎疫情,某市疾控中心檢測人員對外來入市人員進(jìn)行核酸檢測,人員甲、乙均被檢測.設(shè)命題為“甲核酸檢測結(jié)果為陰性”,命題為“乙核酸檢測結(jié)果為陰性”,則命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為()A. B.C. D.5.某海關(guān)緝私艇在執(zhí)行巡邏任務(wù)時,發(fā)現(xiàn)其所在位置正西方向20nmile處有一走私船只,正以30nmile/h的速度向北偏東30°的方向逃竄,若緝私艇突然發(fā)生機(jī)械故障,20min后才以的速度開始追趕,則在走私船只不改變航向和速度的情況下,緝私艇追上走私船只的最短時間為()A.1h B.C. D.6.已知直線與圓相交于,兩點(diǎn),則的取值范圍為()A. B.C. D.7.在空間中,“直線與沒有公共點(diǎn)”是“直線與異面”的()A.必要不充分條件 B.充要條件C.充分不必要條件 D.既不充分也不必要條件8.在三棱錐中,點(diǎn)E,F(xiàn)分別是的中點(diǎn),點(diǎn)G在棱上,且滿足,若,則()A. B.C. D.9.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交C.外切 D.外離10.當(dāng)實(shí)數(shù),m變化時,的最大值是()A.3 B.4C.5 D.611.設(shè)實(shí)數(shù)x,y滿足,則目標(biāo)函數(shù)的最大值是()A. B.C.16 D.3212.已知數(shù)列滿足,,在()A.25 B.30C.32 D.64二、填空題:本題共4小題,每小題5分,共20分。13.若點(diǎn)O和點(diǎn)F分別為橢圓+=1的中心和左焦點(diǎn),點(diǎn)P為橢圓上的任意一點(diǎn),則·的最大值為________.14.在等比數(shù)列中,,則__________15.定義在上的函數(shù)滿足,且對任意都有,則不等式的解集為__________.16.設(shè)函數(shù)滿足,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)列的前項和為,已知,且(1)證明:;(2)求18.(12分)已知橢圓的左焦點(diǎn)為,上頂點(diǎn)為,直線與橢圓的另一個交點(diǎn)為A(1)求點(diǎn)A的坐標(biāo);(2)過點(diǎn)且斜率為的直線與橢圓交于,兩點(diǎn)(均與A,不重合),過點(diǎn)與軸垂直的直線分別交直線,于點(diǎn),,證明:點(diǎn),關(guān)于軸對稱19.(12分)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,O為底面正方形ABCD對角線的交點(diǎn),E為PD的中點(diǎn),且PA=AD.(1)求證:PB∥平面EAC;(2)求直線BD與平面EAC所成角的正弦值.20.(12分)已知橢圓:的一個焦點(diǎn)坐標(biāo)為,離心率.(1)求橢圓的方程;(2)設(shè)為坐標(biāo)原點(diǎn),橢圓與直線相交于兩個不同的點(diǎn)A、B,線段AB的中點(diǎn)為M.若直線OM的斜率為-1,求線段AB的長;(3)如圖,設(shè)橢圓上一點(diǎn)R的橫坐標(biāo)為1(R在第一象限),過R作兩條不重合直線分別與橢圓交于P、Q兩點(diǎn)、若直線PR與QR的傾斜角互補(bǔ),求直線PQ的斜率的所有可能值組成的集合.21.(12分)在等差數(shù)列中,已知且(1)求的通項公式;(2)設(shè),求數(shù)列前項和22.(10分)已知橢圓的上一點(diǎn)處的切線方程為,橢圓C上的點(diǎn)與其右焦點(diǎn)F的最短距離為,離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若點(diǎn)P為直線上任一點(diǎn),過P作橢圓的兩條切線PA,PB,切點(diǎn)為A,B,求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】方程表示雙曲線則,解得,是“方程表示雙曲線”的充分不必要條件.故選:A2、D【解析】直接根據(jù)拋物線焦點(diǎn)弦長公式以及中點(diǎn)坐標(biāo)公式求結(jié)果【詳解】設(shè),,則的中點(diǎn)到軸的距離為,則故選:D3、C【解析】根據(jù)給定的導(dǎo)函數(shù)的圖象,結(jié)合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設(shè)導(dǎo)函數(shù)的圖象與軸的交點(diǎn)分別為,根據(jù)函數(shù)的極值的定義可知在該點(diǎn)處的左右兩側(cè)的導(dǎo)數(shù)符號相反,可得為函數(shù)的極大值點(diǎn),為函數(shù)的極小值點(diǎn),所以函數(shù)極值點(diǎn)的個數(shù)為4個.故選:C.4、D【解析】表示出和,直接判斷即可.【詳解】命題為“甲核酸檢測結(jié)果為陰性”,則命題為“甲核酸檢測結(jié)果不是陰性”;命題為“乙核酸檢測結(jié)果為陰性”,則命題為“乙核酸檢測結(jié)果不是陰性”.故命題“至少有一位人員核酸檢測結(jié)果不是陰性”可表示為.故選D.5、A【解析】設(shè)小時后,相遇地點(diǎn)為,在三角形中根據(jù)題目條件得出,再在三角形中,由勾股定理即可求出.【詳解】以緝私艇為原點(diǎn),建立如下圖所示的直角坐標(biāo)系.圖中走私船所在位置為,設(shè)緝私艇追上走私船的最短時間為,相遇地點(diǎn)為.則,走私船以的速度向北偏東30°的方向逃竄,60°.因為20min后緝私艇才以的速度開始追趕走私船,所以20min走私船行走了,到達(dá).在三角形中,由余弦定理知:,則,所以.在三角形中,,,有:,化簡得:,則.緝私艇追上走私船只的最短時間為1h.故選:A.點(diǎn)睛】6、C【解析】求得直線恒過的定點(diǎn),找出弦長取得最值的狀態(tài),利用弦長公式求解即可.【詳解】因直線方程為:,整理得,故該直線恒過定點(diǎn),又,故點(diǎn)在圓內(nèi),又圓的圓心為則,此時直線過圓心;當(dāng)直線與直線垂直時,取得最小值,此時.故的取值范圍為.故選:.7、A【解析】由于在空間中,若直線與沒有公共點(diǎn),則直線與平行或異面,再根據(jù)充分、必要條件的概念判斷,即可得到結(jié)果.【詳解】在空間中,若直線與沒有公共點(diǎn),則直線與平行或異面.故“直線與沒有公共點(diǎn)”是“直線與異面”的必要不充分條件.故選:A.8、B【解析】利用空間向量的加、減運(yùn)算即可求解.【詳解】由題意可得故選:B.9、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,根據(jù)圓心距和半徑的關(guān)系,判斷兩圓的位置關(guān)系.【詳解】圓的標(biāo)準(zhǔn)方程為,圓的標(biāo)準(zhǔn)方程為,兩圓的圓心距為,即圓心距等于兩圓半徑之和,故兩圓外切,故選:C.10、D【解析】根據(jù)點(diǎn)到直線的距離公式可知可以表示單位圓上點(diǎn)到直線的距離,利用圓的性質(zhì)結(jié)合圖形即得.【詳解】由題可知,可以表示單位圓上點(diǎn)到直線的距離,設(shè),因直線,即表示恒過定點(diǎn),根據(jù)圓的性質(zhì)可得.故選:D.11、C【解析】求的最大值即求的最大值,根據(jù)約束條件畫出可行域,將目標(biāo)函數(shù)看成直線,直線經(jīng)過可行域內(nèi)的點(diǎn),將目標(biāo)與直線的截距建立聯(lián)系,然后得到何時目標(biāo)值取得要求的最值,進(jìn)而求得的最大值,最后求出的最大值.【詳解】要求的最大值即求的最大值.根據(jù)實(shí)數(shù),滿足的條件作出可行域,如圖.將目標(biāo)函數(shù)化為.則表示直線在軸上的截距的相反數(shù).要求的最大值,即求直線在軸上的截距最小值.如圖當(dāng)直線過點(diǎn)時,在軸上的截距最小值.由,解得所以的最大值為,則的最大值為16.故選:C.12、A【解析】根據(jù)題中條件,得出數(shù)列公差,進(jìn)而可求出結(jié)果.【詳解】由得,所以數(shù)列是以為公差的等差數(shù)列,又,所以.故選:A.【點(diǎn)睛】本題主要考查等差數(shù)列的基本量運(yùn)算,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】由橢圓方程得到F,O的坐標(biāo),設(shè)P(x,y)(-2≤x≤2),利用數(shù)量積的坐標(biāo)運(yùn)算將·轉(zhuǎn)化為二次函數(shù)最值求解.【詳解】由橢圓+=1,可得F(-1,0),點(diǎn)O(0,0),設(shè)P(x,y)(-2≤x≤2),則·=x2+x+y2=x2+x+3=x2+x+3=(x+2)2+2,-2≤x≤2,當(dāng)x=2時,·取得最大值6.故答案為:6【點(diǎn)睛】本題主要考查平面向量的數(shù)量積及應(yīng)用以及橢圓的幾何性質(zhì)和二次函數(shù)求最值,還考查了運(yùn)算求解的能力,屬于中檔題.14、【解析】設(shè)等比數(shù)列的公比為,由題意可知和同號,結(jié)合等比中項的性質(zhì)可求得的值.【詳解】設(shè)等比數(shù)列的公比為,則,由等比中項的性質(zhì)可得,因此,.故答案為:.【點(diǎn)睛】本題考查等比中項的計算,解題時不要忽略了對應(yīng)項符號的判斷,考查計算能力,屬于基礎(chǔ)題.15、【解析】利用構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)來求得不等式的解集.【詳解】構(gòu)造函數(shù),,所以在上遞減,由,得,即,所以,即等式的解集為.故答案為:16、5【解析】考點(diǎn):函數(shù)導(dǎo)數(shù)與求值三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)當(dāng)時,由題可得,,兩式子相減可得,即,然后驗證當(dāng)n=1時,命題成立即可;(2)通過求解數(shù)列的奇數(shù)項與偶數(shù)項的和即可得到其對應(yīng)前n項和的通項公式.【詳解】(1)由條件,對任意,有,因而對任意,有,兩式相減,得,即,又,所以,故對一切,(2)由(1)知,,所以,于是數(shù)列是首項,公比為3的等比數(shù)列,數(shù)列是首項,公比為3的等比數(shù)列,所以,于是從而,綜上所述,.【點(diǎn)睛】已知數(shù)列{an}的前n項和Sn,求數(shù)列的通項公式,其求解過程分為三步:(1)先利用a1=S1求出a1;(2)用n-1替換Sn中的n得到一個新的關(guān)系,利用an=Sn-Sn-1(n≥2)便可求出當(dāng)n≥2時an的表達(dá)式;(3)對n=1時的結(jié)果進(jìn)行檢驗,看是否符合n≥2時an的表達(dá)式,如果符合,則可以把數(shù)列的通項公式合寫;如果不符合,則應(yīng)該分n=1與n≥2兩段來寫.?dāng)?shù)列求和的常用方法有倒序相加法,錯位相減法,裂項相消法,分組求和法,并項求和法等,可根據(jù)通項特點(diǎn)進(jìn)行選用.18、(1)(2)證明見解析【解析】(1)先求出直線的方程,聯(lián)立直線與橢圓,求出A點(diǎn)坐標(biāo);(2)設(shè)出直線方程,聯(lián)立橢圓方程,用韋達(dá)定理得到兩根之和,兩根之積,求出兩點(diǎn)的縱坐標(biāo),證明出,即可證明關(guān)于軸對稱.【小問1詳解】由題意得,,所以直線方程為,與橢圓方程聯(lián)立得解得或,當(dāng)時,,所以【小問2詳解】設(shè),,的方程為,聯(lián)立消去得,則,直線的方程為,設(shè),則,直線的方程為,設(shè),則,因為,即,所以點(diǎn),關(guān)于軸對稱19、(1)證明見解析(2)【解析】(1)利用線面平行的判斷定理,證明線線平行,即可證明;(2)建立空間直角坐標(biāo)系,求平面的法向量,利用公式,即可求解.【小問1詳解】連結(jié)EO,由題意可得O為BD的中點(diǎn),又E是PD的中點(diǎn),∴PB∥EO,又∵EO平面EAC,PB平面EAC,∴PB∥平面EAC;【小問2詳解】如圖,以A為原點(diǎn),AB、AD、AP所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,設(shè)AD=2,則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),∴=(-2,2,0),=(0,1,1),=(2,2,0),設(shè)平面EAC的法向量為=(x,y,z),則,即,即,令y=1得x=-1,z=-1,∴平面EAC的一個法向量為=(-1,1,-1),∴設(shè)直線BD與平面EAC所成的角為θ,則sinθ=∴直線BD與平面EAC所成的角的正弦值.20、(1);(2);(3).【解析】(1)根據(jù)給定條件求出橢圓長半軸長a即可計算得解.(2)將代入橢圓的方程,再結(jié)合給定條件求出k值即可計算出AB的長.(3)設(shè)出直線PR的方程,再與橢圓的方程聯(lián)立求出點(diǎn)P坐標(biāo),同理可得點(diǎn)Q坐標(biāo),計算PQ的斜率即可作答.【小問1詳解】依題意,橢圓的半焦距c=1,而,解得,則,所以橢圓的方程是:.【小問2詳解】由消去y并整理得:,解得,,于是得線段AB的中點(diǎn),直線OM斜率為,解得,因此,,所以線段AB的長為.【小問3詳解】由(1)知,點(diǎn),依題意,設(shè)直線PR的斜率為,直線PR方程為:,由消去y并整理得,,設(shè)點(diǎn),則有,顯然直線QR的斜率為-t,設(shè)點(diǎn),同理有,于是得直線PQ的斜率,所以直線PQ的斜率的所有可能值組成的集合.【點(diǎn)睛】方法點(diǎn)睛:求橢圓的標(biāo)準(zhǔn)方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結(jié)合焦點(diǎn)位置可寫出橢圓方程②待定系數(shù)法:若焦點(diǎn)位置明確,則可設(shè)出橢圓的標(biāo)準(zhǔn)方程,結(jié)合已知條件求出a,b;若焦點(diǎn)位置不明確,則需要分焦點(diǎn)在x軸上和y軸上兩種情況討論.21、(1)(2)【解析】(1)由等差數(shù)列基本量的計算即可求解;(2)由裂項相消求和法即可求解.【小問1詳解】解:由題意,設(shè)等差數(shù)列的公差為,則,,解得,;【小問2詳解】解:,.22、(1)(2)證明見解析【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024屆高考語文一輪復(fù)習(xí)第1章信息類文本閱讀4第三節(jié)概念理解和要點(diǎn)概括題-找準(zhǔn)命題角度定位細(xì)微差別課件
- 工程全過程審計實(shí)施要點(diǎn)及案例分析
- 2024年低壓電工試題及答案
- 古詩詞誦讀《虞美人(春花秋月何時了)》課件 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊
- 甘肅省天水市蘭州市2025屆高三一診考試數(shù)學(xué)試卷含解析
- 江蘇省鎮(zhèn)江一中等2025屆高考語文押題試卷含解析
- 廣東省十校2025屆高考臨考沖刺語文試卷含解析
- 2025屆福建省上杭縣一中高考沖刺英語模擬試題含解析
- 湖南省“五市十?!?025屆高考數(shù)學(xué)五模試卷含解析
- 10.1《勸學(xué)》課件 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊-2
- 2024年事業(yè)單位考試山東省濱州市《公共基礎(chǔ)知識》巔峰沖刺試卷含解析
- 風(fēng)電場環(huán)境保護(hù)培訓(xùn)課件
- 銀礦的開采與加工
- 小學(xué)綜合實(shí)踐課《我的零花錢》教學(xué)設(shè)計公開課教案
- 強(qiáng)酸強(qiáng)堿使用安全培訓(xùn)
- DB4201T569.1-2018武漢市反恐怖防范系統(tǒng)管理規(guī)范 第1部分:通則
- 新生兒聽力篩查工作管理制度
- 雨污水市政接駁施工方案
- 天津市2022-2023學(xué)年六年級上學(xué)期數(shù)學(xué)期末試卷(含答案)
- 人工智能技術(shù)導(dǎo)論-課件 第8章 人工智能倫理法規(guī)
- 黑龍江省哈爾濱市香坊區(qū)2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題
評論
0/150
提交評論