新疆維吾爾自治區(qū)阿克蘇市農(nóng)一師高級中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第1頁
新疆維吾爾自治區(qū)阿克蘇市農(nóng)一師高級中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第2頁
新疆維吾爾自治區(qū)阿克蘇市農(nóng)一師高級中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第3頁
新疆維吾爾自治區(qū)阿克蘇市農(nóng)一師高級中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第4頁
新疆維吾爾自治區(qū)阿克蘇市農(nóng)一師高級中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

新疆維吾爾自治區(qū)阿克蘇市農(nóng)一師高級中學2025屆高二上數(shù)學期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題:“,”的否定是()A., B.,C., D.,2.已知平面的一個法向量為,且,則點A到平面的距離為()A. B.C. D.13.已知橢圓方程為:,則其離心率為()A. B.C. D.4.“”是“直線與直線互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.某商場有四類食品,其中糧食類、植物油類、動物性食品類以及果蔬類分別有40種、10種、30種、20種,現(xiàn)從中抽取一個容量為20的樣本進行食品安全檢測.若采用分層抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是()A.4 B.5C.6 D.76.數(shù)列的一個通項公式為()A. B.C. D.7.函數(shù)的極大值點為()A. B.C. D.不存在8.已知函數(shù)是定義在上奇函數(shù),,當時,有成立,則不等式的解集是()A. B.C. D.9.已知橢圓的左,右焦點分別為,,直線與C交于點M,N,若四邊形的面積為且,則C的離心率為()A. B.C. D.10.甲、乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率()A.50% B.30%C.10% D.60%11.設(shè)等差數(shù)列的前項和為,若,則的值為()A.28 B.39C.56 D.11712.已知動點的坐標滿足方程,則的軌跡方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在長方體中,M、N分別是BC、的中點,若,則______14.已知數(shù)列滿足下列條件:①數(shù)列是等比數(shù)列;②數(shù)列是單調(diào)遞增數(shù)列;③數(shù)列的公比滿足.請寫出一個符合條件的數(shù)列的通項公式__________.15.函數(shù)的圖象在點處的切線的方程是______.16.過拋物線:的焦點的直線交于,兩點,若,則線段中點的橫坐標為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知兩條直線,.設(shè)為實數(shù),分別根據(jù)下列條件求的值.(1);(2)直線在軸、軸上截距之和等于.18.(12分)已知橢圓C對稱中心在原點,對稱軸為坐標軸,且,兩點(1)求橢圓C的方程;(2)設(shè)M、N分別為橢圓與x軸負半軸、y軸負半軸的交點,P為橢圓上在第一象限內(nèi)一點,直線PM與y軸交于點S,直線PN與x軸交于點T,求證:四邊形MSTN的面積為定值19.(12分)已知橢圓的離心率是,且過點.(1)求橢圓的標準方程;(2)若直線與橢圓交于A、B兩點,線段的中點為,為坐標原點,且,求面積的最大值.20.(12分)已知圓,直線.(1)當為何值時,直線與圓相切;(2)當直線與圓相交于、兩點,且時,求直線的方程.21.(12分)設(shè)橢圓:()的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.(1)求橢圓的方程;(2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.22.(10分)已知拋物線y2=2px(p>0)的焦點為F,過F且與x軸垂直的直線交該拋物線于A,B兩點,|AB|=4(1)求拋物線的方程;(2)過點F的直線l交拋物線于P,Q兩點,若△OPQ的面積為4,求直線l的斜率(其中O為坐標原點)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】由全稱量詞命題的否定可知,命題“,”的否定是“,”.故選:D.2、B【解析】直接由點面距離的向量公式就可求出【詳解】∵,∴,又平面的一個法向量為,∴點A到平面的距離為故選:B3、B【解析】根據(jù)橢圓的標準方程,確定,計算離心率即可.【詳解】由知,,,,即,故選:B4、A【解析】根據(jù)直線垂直求出的范圍即可得出.【詳解】由直線垂直可得,解得或1,所以“”是“直線與直線互相垂直”的充分不必要條件.故選:A.5、C【解析】按照分層抽樣的定義進行抽取.【詳解】按照分層抽樣的定義有,糧食類:植物油類:動物性食品類:果蔬類=4:1:3:2,抽20個出來,則糧食類8個,植物油類2個,動物性食品類6個,果蔬類4個,則抽取的植物油類與果蔬類食品種數(shù)之和是6個.故選:C.6、A【解析】根據(jù)規(guī)律,總結(jié)通項公式,即可得答案.【詳解】根據(jù)規(guī)律可知數(shù)列的前三項為,所以該數(shù)列一個通項公式為故選:A7、B【解析】求導,令導數(shù)等于0,然后判斷導數(shù)符號可得,或者根據(jù)對勾函數(shù)圖象可解.【詳解】令,得,因為時,,時,,所以時有極大值;當時,,時,,所以時有極小值.故選:B8、A【解析】構(gòu)造函數(shù),分析該函數(shù)的定義域與奇偶性,利用導數(shù)分析出函數(shù)在上為增函數(shù),從而可知該函數(shù)在上為減函數(shù),綜合可得出原不等式的解集.【詳解】令,則函數(shù)的定義域為,且,則函數(shù)為偶函數(shù),所以,,當時,,所以,函數(shù)在上為增函數(shù),故函數(shù)在上為減函數(shù),由等價于或:當時,由可得;當時,由可得.綜上所述,不等式的解集為.故選:A.9、A【解析】根據(jù)題意可知四邊形為平行四邊形,設(shè),進而得,根據(jù)四邊形面積求出點M的坐標,再代入橢圓方程得出關(guān)于e的方程,解方程即可.【詳解】如圖,不妨設(shè)點在第一象限,由橢圓的對稱性得四邊形為平行四邊形,設(shè)點,由,得,因為四邊形的面積為,所以,得,由,得,解得,所以,即點,代入橢圓方程,得,整理得,由,得,解得,由,得.故選:A10、A【解析】根據(jù)甲獲勝和甲、乙兩人下成平局是互斥事件即可求解.【詳解】甲不輸有兩種情況:甲獲勝或甲、乙兩人下成平局,甲獲勝和甲、乙兩人下成平局是互斥事件,所以甲、乙兩人下成平局的概率為.故選:A.11、B【解析】由已知結(jié)合等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)即可求解.【詳解】因為等差數(shù)列中,,則.故選:B.12、C【解析】此方程表示點到點的距離與到點的距離之差為8,而這正好符合雙曲線的定義,點的軌跡是雙曲線的右支,,的軌跡方程是,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】作出圖像,根據(jù)幾何關(guān)系,結(jié)合空間向量的加減法運算法則即可求解.【詳解】,∴,,,故答案為:-2.14、(答案不唯一)【解析】根據(jù)題意判斷數(shù)列特征,寫出一個符合題意的數(shù)列的通項公式即可.【詳解】因為數(shù)列是等比數(shù)列,數(shù)列是單調(diào)遞增數(shù)列,數(shù)列公比滿足,所以等比數(shù)列公比,且各項均為負數(shù),符合題意的一個數(shù)列的通項公式為.故答案為:(答案不唯一)15、【解析】求導,求得,,根據(jù)直線的點斜式方程求得答案.【詳解】因為,,所以切線的斜率,切線方程是,即.故答案為:.16、【解析】根據(jù)題意,作出拋物線的簡圖,求出拋物線的焦點坐標以及準線方程,分析可得為直角梯形中位線,由拋物線的定義分析可得答案【詳解】如圖,拋物線的焦點為,準線為,分別過,作準線的垂線,垂足為,,則有過的中點作準線的垂線,垂足為,則為直角梯形中位線,則,即,解得.所以的橫坐標為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由兩直線平行可得出關(guān)于的等式,求出的值,再代入兩直線方程,驗證兩直線是否平行,由此可得出結(jié)果;(2)分析可知,求出直線在軸、軸上的截距,結(jié)合已知條件可得出關(guān)于的等式,即可解得的值.【小問1詳解】解:由,則,即,解得或.當時,,,此時;當時,,,此時重合,不合乎題意.綜上所述,;【小問2詳解】解:對于直線,由已知可得,則,令,得;令,得.因為直線在軸、軸上截距之和等于,即,解得.18、(1)(2)證明見解析【解析】(1)設(shè)橢圓方程為,利用待定系數(shù)法求得的值,即可得出答案;(2)設(shè),,,易得,分別求出直線PM和直線PN的方程,從而可求出的坐標,再根據(jù)即可得出答案.【小問1詳解】解:依題意設(shè)橢圓方程為,將,代入得,解得得,,∴所求橢圓方程為;【小問2詳解】證明:設(shè),,,,P點坐標滿足,即,直線PM:,可得,直線PN:,可得,.19、(1);(2)2.【解析】(1)根據(jù)已知條件列出關(guān)于a、b、c的方程組即可求得橢圓標準方程;(2)直線l和x軸垂直時,根據(jù)已知條件求出此時△AOB面積;直線l和x軸不垂直時,設(shè)直線方程為點斜式y(tǒng)=kx+t,代入橢圓方程得二次方程,結(jié)合韋達定理和弦長得k和t關(guān)系,表示出△AOB的面積,結(jié)合基本不等式即可求解三角形面積最值.【小問1詳解】由題知,解得,∴橢圓的標準方程為.【小問2詳解】當軸時,位于軸上,且,由可得,此時;當不垂直軸時,設(shè)直線的方程為,與橢圓交于,,由,得.得,,從而已知,可得.∵.設(shè)到直線的距離為,則,結(jié)合化簡得此時的面積最大,最大值為2.當且僅當即時取等號,綜上,的面積的最大值為2.20、(1);(2)或.【解析】(1)將圓的方程表示為標準方程,確定圓心坐標與半徑,利用圓心到直線的距離可求得實數(shù)的值;(2)求出圓心到直線的距離,利用、、三者滿足勾股定理可求得的方程,解出的值,即可得出直線的方程.【詳解】將圓C的方程配方得標準方程為,則此圓的圓心為,半徑為.(1)若直線與圓相切,則有,解得;(2)圓心到直線的距離為,由勾股定理可得,可得,整理得,解得或,故所求直線方程為或.【點睛】方法點睛:圓的弦長的常用求法(1)幾何法:求圓的半徑為,弦心距為,弦長為,則;(2)代數(shù)方法:運用根與系數(shù)的關(guān)系及弦長公式.21、(1);(2)6.【解析】(1)本小題根據(jù)題意先求,,,再求橢圓的標準方程;(2)本小題先設(shè)過的直線的方程,再根據(jù)題意表示出四邊形的面積,最后求最值即可.【詳解】解:(1)∵橢圓上一點到左右兩個焦點、的距離之和是4,∴即,∵,∴,又∵,∴.∴橢圓的標準方程為;(2)設(shè)點、的坐標為,,因為直線過點,所以可設(shè)直線方程為,聯(lián)立方程,消去可得:,化簡整理得,其中,所以,,因為,所以四邊形是平行四邊形,設(shè)平面四邊形的面積為,則,設(shè),則(),所以,因為,所以,,所以四邊形面積的最大值為6.【點睛】本題考查橢圓的標準方程,相交弦等問題,是偏難題.22、(1);(2).【解析】(1)根據(jù)拋物線的定義以及拋物線通徑的性質(zhì)可得,從而可得結(jié)果;(2)設(shè)直線的方程為,代入,得,利用弦長公式,結(jié)合韋達定理可得的值,由點到直線的距離公式,根據(jù)三角形面積公式可得,從而可得結(jié)果.【詳解】(1)由拋物線的定義得到準線的距離都是p,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論