集成光電子器件及設(shè)計(jì) - 光學(xué)微腔:原理_第1頁
集成光電子器件及設(shè)計(jì) - 光學(xué)微腔:原理_第2頁
集成光電子器件及設(shè)計(jì) - 光學(xué)微腔:原理_第3頁
集成光電子器件及設(shè)計(jì) - 光學(xué)微腔:原理_第4頁
集成光電子器件及設(shè)計(jì) - 光學(xué)微腔:原理_第5頁
已閱讀5頁,還剩35頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第7章

光學(xué)微腔:原理集成光電子器件及設(shè)計(jì)2Outline

1.

Background

2.

Optical

Micro‐cavities:

2.1.

Standing‐wave

type:

F‐P

cavity;

2.2.

Traveling‐wave:

2.2.1.

Microring

resonator;

2.2.2.

Micro‐disk

resonator.

3Standing‐wave

&

Traveling‐wave

The

Fabry–Pérot

Cavity

~

Standing‐wave

λq

2LThe

Microring

Cavity

~

Traveling‐wave42.1.

Standing‐wave:

Fabry–Pérot

CavityL1L2hPG1

G2Charles

Fabry

(1867‐1945)Alfred

Perot(1863‐1925)F‐P

resonator

(1897)567Transmission:Reflection:Transmission

(dBm)8-30-40-10-20

FSR:

~

21

nm;

Q‐value:

~2600;

Extinction

ratio:

13dB;

1.52

1.545

1.57

1.595

1.62

Wavelength

(μm)FSR

could

be

as

large

as

200nm

by

reducing

the

cavity

length

to

about

1μm.

It

is

much

larger

than

the

MRR’s

FSR.

SOI‐nanowire

F‐P

micro‐cavity

0J.

Wang,

D.

Dai,

and

S.

He.

IPRA

conference

2010,

USA.

Bragg

gratingsQ=(6.3±0.8)x101092.2

Traveling‐wave

optical

cavity/?page_id=59silica

microtoroids10Microring

resonators&

micro‐racetrack

resonators?

(0)E1'

=

k2

(0

'1)

'E2

(0

'

)exp(?

jφ2

0'1')=

eE1k2

(0

'1)

'k12

(0')=

k12

(0')

+11Model

of

a

single

ring

resonator

with

one

waveguide

General

formula

11′Method

I

2

2′l4′1′l23′(0

(

(2'

('(

(0

(

(2

('?E20)

=

k12)E10)

+k1'0)E10)?E2'

=

k12')E10)

+k1'0)E10)?

(0)?('1'

(2'(2'

('1'

(0(('('1'

(2'('('1'

(2'(2

('1'

(0(0((E10)

(0)E20)E10)E20)E10)1?

k20)k1'0)

k1'0)k20)k12')

1?

k20)k1'0)=k1'0)k20)k12')1?

k20)k1'0)=

k12)

+0k0

0

k2′1′

0

αl2'1'2'1'

φ2'1'

=

βl2'1'0βl2'1'

=

mλResonance

wavelgnth?

(0)E1'

=

k2

(0

'1)

'E2

(0

'

)E1=

k12

(0)

+k2

(0

'1)

'k12

(0')=

k12

(0')

+=?

?∏k1'2'

?

tol

exp(?

jΦtol)=

E

?

?k1'2

∏k1'2'

?

n

exp(?

jΦn)??(0

(

(2'

('(

(0

(

(2

('?E20)

=

k12)E10)

+k1'0)E10)?E2'

=

k12')E10)

+k1'0)E10)?

(0)?('1'

(2'(2'

('1'

(0(('('1'

(2'('('1'

(2'(2

('1'

(0((E20)E10)E10)

(0)E20)E10)=

k1'0)k20)k12')

1?k20)k1'0)1?k20)k1'0)

k1'0)k20)k12')

1?k20)k1'0)1′2′2′#N

1′1′

#1

1′

1

#0#n

2′

2

The

resonator’s

response

Ring

resonator

with

N

output

ports.

Through

port

2

1

Input

port

1

2output

port

#1

output

port

#N

2′

2

1output

port

#n

(0)2'1'k?

N

(n)??

n=1

?Daoxin

Dai

and

Sailing

He.

Proposal

of

a

coupled‐microring‐based

wavelength‐selective

1×N

122'

(n)2E(0)?

(n)

n?1

(m)?

m=1=

k

=

?

jkk13121′2′#01′12′2#1121′2′#N1′21#n

2′Input

portThrough

portoutput

port

#1output

port

#noutput

port

#N(

(('1'

(0

(0

(2'

(2

(0

1

1′l4′1′

The

critical

coupling

condition

2No

power

outputs

from

the

thru

port,

i.e.,

2′

E20)

/

E10)

=

0

l23′

k20)

=

k12)

/[k12)k1'0)

?

k1'0)k12')]k2′1′(0

(2'(1)

For

coupler

#0,

one

has

(0)

(0)

1'2

12'('1'k20)

=

1?k

2

k12)

=

k1'0)

=

1?k

2Finally

the

critical

coupling

condition

becomes14

Special

case

I:

all

passed

filter

(n=1)

The

critical

coupling

condition

becomes0

(0)2'1'0kαl2'1'exp(?

jφ2'1')=

e

1

1′l4′1′

2

2′l23′k2′1′and2

(0)2'1'k=

1?kα<0α>0

λPowerFSR=?

?∏k1'2'

?

tol

exp(?

jΦtol)E1=

k12

+=

E

?

?k1'2

∏k1'2'

?

n

exp(?

jΦn)??15Special

case

II:

add‐drop

filter

(n=2)

(0)2'1'k?

N

(n)??

n=1

?2'E('1'

(2'(2

('1'

(0(0)(E20)

(0)k1'0)k20)k12')1?k20)k1'0)(0)?

(n)

n?1

(m)?

m=1

1

1′

l4′1′

(n)2

2

2′

l23′k2′1′16The

resonator’s

response

Key

features:

FSR

(free

spectral

response).

3dB‐bandwidth,

Q

factor

=

λ/BW3dB.

Resonance

wavelengths.

17Model

of

a

single

ring

resonator

with

one

waveguide

Method

IIα

is

the

loss

coefficient

of

the

ring

(zero

loss:

α

=

1).

θ

=

ωL/c,

L

=

2πr,

c

=

c0/neff,

ω

=

kc0,

k

=

2π/λThe

transmission

power

Pt1

in

the

output

waveguide,The

circulating

power

Pi2

in

the

ring

is

given

bywhere

t

=

|t|

exp

(j?t),

|t|

representing

the

coupling

losses

and

?tthe

phase

of

the

coupler.On

resonance,

(θ+?t)

=

2πm,

where

m

is

an

integer

critical

coupling:

α=|t|

1819The

spectral

response

of

an

all‐passed

filter20Model

of

a

basic

add–drop

single

ring

resonator

filterAt

resonance:Critical

coupling:21Spectral

response

of

an

add–drop

ring

resonator

filter22Some

important

parameters

FSR

(free

spectral

range):

neffL=mλn’effL=(m‐1)λ’

(neff+

Δλ

(?neff/

?

λ))L=(m‐1)(λ+Δλ)

ΔλFSR=

λ/[m

(ng/neff)]

Group

index233dB

bandwidth

(full‐width

at

half‐maximum)

|Et2|2=0.5Pt2_resonance_When

α=1,

t1=t2

(symmetrical),

one

has

Finess

Q

valueThe

intensity

enhancement

or

buildup

factor

B:

On‐resonanceLossless,

κ1=κ2

B=Qλ/(πneffL)

2425An

example

to

show

the

field

enhancement

in

the

resonator:B

~

105

Q

~1×108,

D

~

50μm,

Vm~

600

μm3Pin

=

1

mWExperimental

data1

mWPcav~

100

W,

Icav

~

2.5

GW/cm2,τ

~

100

ns,

#

of

round

trip

~

2×105.

>

100

W26Serially

Coupled

Double

Ring

Resonatorwhere

α1,2

represent

the

half

round

trip

loss

coefficients

of

ring

resonator

one

and

two

respectively.27Assuming

a

coupler

without

losses

and

symmetric

coupling

behavior,

setting

t

=

t?

andκ=?κ?,

one

hasIn

order

to

achieve

a

double

ring

resonator

filter

with

maximally

flat

response

for

the

drop

port,

one

should

make

28An

exampleR1=R2=5.08um,

n1=3.45,

n2=1.456,

k1=0.18,

k2=0.01~0.09.

k1=0.18,

k2=0.0164729Parallel

Coupled

Double

Ring

ResonatorSimplifiedRegular

model:30Finally31Parallel

Coupled

Double

Ring

Resonator

with

Coupling

Between

the

Two

Ring

ResonatorsThe

distance

Λ

between

the

rings

does

not

have

an

influence

on

the

transfer

characteristic.For

lossless

couplers

with

κ1=κ3=

κ:Chremmos

and

Uzunoglu.

PTL.

17(10):

2110‐2112

,

200532In

order

to

realize

a

maximally

flat

response

with

a

single

peak,

the

coupling

coefficients

have

to

obey

the

following

equation:The

corresponding

FWHM

is

given

by33Modeling

cascaded‐ring

resonators:

Method

IIIwhere34Numerical

simulation

for

microring

resonators:

FDTD

methodFDTD

simulation/en/fdtd/user_guide_cw_norm_ring.html/rsoft/application‐galle

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論