浙江省麗水市達標(biāo)名校2024年中考數(shù)學(xué)仿真試卷含解析_第1頁
浙江省麗水市達標(biāo)名校2024年中考數(shù)學(xué)仿真試卷含解析_第2頁
浙江省麗水市達標(biāo)名校2024年中考數(shù)學(xué)仿真試卷含解析_第3頁
浙江省麗水市達標(biāo)名校2024年中考數(shù)學(xué)仿真試卷含解析_第4頁
浙江省麗水市達標(biāo)名校2024年中考數(shù)學(xué)仿真試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省麗水市達標(biāo)名校2024年中考數(shù)學(xué)仿真試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,I是?ABC的內(nèi)心,AI向延長線和△ABC的外接圓相交于點D,連接BI,BD,DC下列說法中錯誤的一項是()A.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DC重合B.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DI熏合C.∠CAD繞點A順時針旋轉(zhuǎn)一定能與∠DAB重合D.線段ID繞點I順時針旋轉(zhuǎn)一定能與線段IB重合2.如圖,四邊形ABCD是菱形,對角線AC,BD交于點O,,,于點H,且DH與AC交于G,則OG長度為A. B. C. D.3.已知二次函數(shù)的圖象如圖所示,若,是這個函數(shù)圖象上的三點,則的大小關(guān)系是()A. B. C. D.4.如圖,若a∥b,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.120° D.150°5.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F(xiàn).已知AB=1,BC=3,DE=2,則EF的長為()A.4 B..5 C.6 D.86.在△ABC中,若=0,則∠C的度數(shù)是()A.45° B.60° C.75° D.105°7.如圖,折疊矩形紙片ABCD的一邊AD,使點D落在BC邊上的點F處,若AB=8,BC=10,則△CEF的周長為()A.12 B.16 C.18 D.248.下列四個圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.9.將分別標(biāo)有“孔”“孟”“之”“鄉(xiāng)”漢字的四個小球裝在一個不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻.隨機摸出一球,不放回;再隨機摸出一球.兩次摸出的球上的漢字能組成“孔孟”的概率是()A. B. C. D.10.-5的相反數(shù)是()A.5 B. C. D.11.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是()A. B. C. D.12.下列各數(shù)是不等式組的解是()A.0 B. C.2 D.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若關(guān)于x的一元二次方程x2+2x﹣m2﹣m=0(m>0),當(dāng)m=1、2、3、…、2018時,相應(yīng)的一元二次方程的兩個根分別記為α1、β1,α2、β2,…,α2018、β2018,則:的值為_____.14.近年來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為進一步普及環(huán)保和健康知識,我市某校舉行了“建設(shè)宜居成都,關(guān)注環(huán)境保護”的知識競賽,某班的學(xué)生成績統(tǒng)計如下:成績(分)60708090100人數(shù)4812115則該辦學(xué)生成績的眾數(shù)和中位數(shù)分別是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分15.已知甲、乙兩組數(shù)據(jù)的折線圖如圖,設(shè)甲、乙兩組數(shù)據(jù)的方差分別為S甲2、S乙2,則S甲2__S乙2(填“>”、“=”、“<”)16.一個多邊形,除了一個內(nèi)角外,其余各角的和為2750°,則這一內(nèi)角為_____度.17.寫出一個平面直角坐標(biāo)系中第三象限內(nèi)點的坐標(biāo):(__________)18.如圖,ABCD的周長為36,對角線AC,BD相交于點O.點E是CD的中點,BD=12,則△DOE的周長為.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖①,二次函數(shù)的拋物線的頂點坐標(biāo)C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標(biāo)為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最小?若存在,求出這個最小值及點G、H的坐標(biāo);若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.20.(6分)如圖,把兩個邊長相等的等邊△ABC和△ACD拼成菱形ABCD,點E、F分別是CB、DC延長上的動點,且始終保持BE=CF,連結(jié)AE、AF、EF.求證:AEF是等邊三角形.21.(6分)如圖,在△ABC中,∠C=90°.作∠BAC的平分線AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面積.22.(8分)為了促進學(xué)生多樣化發(fā)展,某校組織開展了社團活動,分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學(xué)生喜愛哪種社團活動,學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:(1)此次共調(diào)查了多少人?(2)求文學(xué)社團在扇形統(tǒng)計圖中所占圓心角的度數(shù);(3)請將條形統(tǒng)計圖補充完整;(4)若該校有1500名學(xué)生,請估計喜歡體育類社團的學(xué)生有多少人?23.(8分)如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,直線y=kx+b交BC于點E(1,m),交AB于點F(4,),反比例函數(shù)y=(x>0)的圖象經(jīng)過點E,F(xiàn).(1)求反比例函數(shù)及一次函數(shù)解析式;(2)點P是線段EF上一點,連接PO、PA,若△POA的面積等于△EBF的面積,求點P的坐標(biāo).24.(10分)某同學(xué)報名參加學(xué)校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).該同學(xué)從5個項目中任選一個,恰好是田賽項目的概率P為;該同學(xué)從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1,利用列表法或樹狀圖加以說明;該同學(xué)從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為.25.(10分)如圖,在△ABC中,CD⊥AB于點D,tanA=2cos∠BCD,(1)求證:BC=2AD;(2)若cosB=,AB=10,求CD的長.26.(12分)學(xué)校決定在學(xué)生中開設(shè):A、實心球;B、立定跳遠;C、跳繩;D、跑步四種活動項目.為了了解學(xué)生對四種項目的喜歡情況,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖,請結(jié)合圖中的信息解答下列問題:(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?(2)請計算本項調(diào)查中喜歡“立定跳遠”的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整.(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有2名男生,3名女生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請用畫樹狀圖或列表法求出剛好抽到不同性別學(xué)生的概率.27.(12分)已知,平面直角坐標(biāo)系中的點A(a,1),t=ab﹣a2﹣b2(a,b是實數(shù))(1)若關(guān)于x的反比例函數(shù)y=過點A,求t的取值范圍.(2)若關(guān)于x的一次函數(shù)y=bx過點A,求t的取值范圍.(3)若關(guān)于x的二次函數(shù)y=x2+bx+b2過點A,求t的取值范圍.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】解:∵I是△ABC的內(nèi)心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正確,不符合題意;∴=,∴BD=CD,故A正確,不符合題意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正確,不符合題意.故選D.點睛:本題考查了三角形的內(nèi)切圓和內(nèi)心的,以及等腰三角形的判定與性質(zhì),同弧所對的圓周角相等.2、B【解析】試題解析:在菱形中,,,所以,,在中,,因為,所以,則,在中,由勾股定理得,,由可得,,即,所以.故選B.3、A【解析】

先求出二次函數(shù)的對稱軸,結(jié)合二次函數(shù)的增減性即可判斷.【詳解】解:二次函數(shù)的對稱軸為直線,∵拋物線開口向下,∴當(dāng)時,y隨x增大而增大,∵,∴故答案為:A.【點睛】本題考查了根據(jù)自變量的大小,比較函數(shù)值的大小,解題的關(guān)鍵是熟悉二次函數(shù)的增減性.4、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質(zhì),對頂角相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.平行線的性質(zhì)定理:兩直線平行,同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補,兩條平行線之間的距離處處相等.5、C【解析】

解:∵AD∥BE∥CF,根據(jù)平行線分線段成比例定理可得,即,解得EF=6,故選C.6、C【解析】

根據(jù)非負數(shù)的性質(zhì)可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】由題意,得

cosA=,tanB=1,

∴∠A=60°,∠B=45°,

∴∠C=180°-∠A-∠B=180°-60°-45°=75°.

故選C.7、A【解析】

解:∵四邊形ABCD為矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直線AE折疊,頂點D恰好落在BC邊上的F處,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC-BF=10-6=4,∴△CEF的周長為:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故選A.8、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,不是中心對稱圖形;C、是軸對稱圖形,不是中心對稱圖形;D、不是軸對稱圖形,是中心對稱圖形.故選D.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.9、B【解析】

根據(jù)簡單概率的計算公式即可得解.【詳解】一共四個小球,隨機摸出一球,不放回;再隨機摸出一球一共有12中可能,其中能組成孔孟的有2種,所以兩次摸出的球上的漢字能組成“孔孟”的概率是.故選B.考點:簡單概率計算.10、A【解析】由相反數(shù)的定義:“只有符號不同的兩個數(shù)互為相反數(shù)”可知-5的相反數(shù)是5.故選A.11、D【解析】試題分析:A.是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項錯誤;C.是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項正確.故選D.考點:軸對稱圖形.12、D【解析】

求出不等式組的解集,判斷即可.【詳解】,由①得:x>-1,由②得:x>2,則不等式組的解集為x>2,即3是不等式組的解,故選D.【點睛】此題考查了解一元一次不等式組,熟練掌握運算法則是解本題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】

利用根與系數(shù)的關(guān)系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式變形,再代入,即可求出答案.【詳解】∵x2+2x-m2-m=0,m=1,2,3,…,2018,∴由根與系數(shù)的關(guān)系得:α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.∴原式===2×()=2×(1-)=,故答案為.【點睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.14、B.【解析】試題分析:眾數(shù)是在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù),這組數(shù)據(jù)中80出現(xiàn)12次,出現(xiàn)的次數(shù)最多,故這組數(shù)據(jù)的眾數(shù)為80分;中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)).因此這組40個按大小排序的數(shù)據(jù)中,中位數(shù)是按從小到大排列后第20,21個數(shù)的平均數(shù),而第20,21個數(shù)都在80分組,故這組數(shù)據(jù)的中位數(shù)為80分.故選B.考點:1.眾數(shù);2.中位數(shù).15、>【解析】

要比較甲、乙方差的大小,就需要求出甲、乙的方差;首先根據(jù)折線統(tǒng)計圖結(jié)合根據(jù)平均數(shù)的計算公式求出這兩組數(shù)據(jù)的平均數(shù);接下來根據(jù)方差的公式求出甲、乙兩個樣本的方差,然后比較即可解答題目.【詳解】甲組的平均數(shù)為:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙組的平均數(shù)為:=4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案為:>.【點睛】本題考查的知識點是方差,算術(shù)平均數(shù),折線統(tǒng)計圖,解題的關(guān)鍵是熟練的掌握方差,算術(shù)平均數(shù),折線統(tǒng)計圖.16、130【解析】分析:n邊形的內(nèi)角和是因而內(nèi)角和一定是180度的倍數(shù).而多邊形的內(nèi)角一定大于0,并且小于180度,因而內(nèi)角和除去一個內(nèi)角的值,這個值除以180度,所得數(shù)值比邊數(shù)要小,小的值小于1.詳解:設(shè)多邊形的邊數(shù)為x,由題意有解得因而多邊形的邊數(shù)是18,則這一內(nèi)角為故答案為點睛:考查多邊形的內(nèi)角和公式,熟記多邊形的內(nèi)角和公式是解題的關(guān)鍵.17、答案不唯一,如:(﹣1,﹣1),橫坐標(biāo)和縱坐標(biāo)都是負數(shù)即可.【解析】

讓橫坐標(biāo)、縱坐標(biāo)為負數(shù)即可.【詳解】在第三象限內(nèi)點的坐標(biāo)為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標(biāo)和縱坐標(biāo)都是負數(shù)即可.18、1.【解析】∵ABCD的周長為33,∴2(BC+CD)=33,則BC+CD=2.∵四邊形ABCD是平行四邊形,對角線AC,BD相交于點O,BD=12,∴OD=OB=BD=3.又∵點E是CD的中點,∴OE是△BCD的中位線,DE=CD.∴OE=BC.∴△DOE的周長="OD+OE+DE="OD+(BC+CD)=3+9=1,即△DOE的周長為1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、【小題1】設(shè)所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負半軸上取一點I,使得點F與點I關(guān)于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設(shè)過A、E兩點的一次函數(shù)解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標(biāo)為-2,將x=-2,代入拋物線,得∴點E坐標(biāo)為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網(wǎng)]∴點D與點E關(guān)于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數(shù)解析式為:y=-x+1∴當(dāng)x=0時,y=1∴點F坐標(biāo)為(0,1)……5分∴|DF|=2………③又∵點F與點I關(guān)于x軸對稱,∴點I坐標(biāo)為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時,EG+GH+HI最小設(shè)過E(-2,3)、I(0,-1)兩點的函數(shù)解析式為:y=k分別將點E(-2,3)、點I(0,-1)代入y=k-2k1過I、E兩點的一次函數(shù)解析式為:y=-2x-1∴當(dāng)x=-1時,y=1;當(dāng)y=0時,x=-12∴點G坐標(biāo)為(-1,1),點H坐標(biāo)為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點A(1,0),點C(-1,4),設(shè)過A(1,0),點C(-1,4)兩點的函數(shù)解析式為:,得:k2解得:k2過A、C兩點的一次函數(shù)解析式為:y=-2x+2,當(dāng)x=0時,y=2,即M的坐標(biāo)為(0,2);由圖可知,△AOM為直角三角形,且OAOM要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論;……………9分①當(dāng)∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;……………………10分②當(dāng)∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.……11分綜上所述,存在以P、C、M為頂點的三角形與△AOM相似,點P的坐標(biāo)為(-4,0)12分【解析】(1)直接利用三點式求出二次函數(shù)的解析式;(2)若四邊形DFHG的周長最小,應(yīng)將邊長進行轉(zhuǎn)換,利用對稱性,要使四邊形DFHG的周長最小,由于DF是一個定值,只要使DG+GH+HI最小即可,由圖形的對稱性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時,EG+GH+HI最小,即|EI|=(-2-0即邊形DFHG的周長最小為2+25(3)要使△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論,①當(dāng)∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;②當(dāng)∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.即求出以P、C、M為頂點的三角形與△AOM相似的P的坐標(biāo)(-4,0)20、見解析【解析】分析:由等邊三角形的性質(zhì)即可得出∠ABE=∠ACF,由全等三角形的性質(zhì)即可得出結(jié)論.詳解:證明:∵△ABC和△ACD均為等邊三角形∴AB=AC,∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°,∵BE=CF,∴△ABE≌△ACF,∴AE=AF,∴∠EAB=∠FAC,∴∠EAF=∠BAC=60°,∴△AEF是等邊三角形.點睛:此題是四邊形綜合題,主要考查了等邊三角形的性質(zhì)和全等三角形的判定和性質(zhì),直角三角形的性質(zhì),相似三角形的判定和性質(zhì),解題關(guān)鍵是判斷出△ABE≌△ACF.21、(1)答案見解析;(2)【解析】

(1)根據(jù)三角形角平分線的定義,即可得到AD;

(2)過D作于DE⊥ABE,根據(jù)角平分線的性質(zhì)得到DE=CD=4,由三角形的面積公式即可得到結(jié)論.【詳解】解:(1)如圖所示,AD即為所求;

(2)如圖,過D作DE⊥AB于E,

∵AD平分∠BAC,

∴DE=CD=4,

∴S△ABD=AB·DE=20cm2.【點睛】掌握畫角平分線的方法和角平分線的相關(guān)定義知識是解答本題的關(guān)鍵.22、(1)200;(2)108°;(3)答案見解析;(4)600【解析】試題分析:(1)根據(jù)體育人數(shù)80人,占40%,可以求出總?cè)藬?shù).(2)根據(jù)圓心角=百分比×360°即可解決問題.(3)求出藝術(shù)類、其它類社團人數(shù),即可畫出條形圖.(4)用樣本百分比估計總體百分比即可解決問題.試題解析:(1)80÷40%=200(人).

∴此次共調(diào)查200人.

(2)×360°=108°.∴文學(xué)社團在扇形統(tǒng)計圖中所占圓心角的度數(shù)為108°.

(3)補全如圖,(4)1500×40%=600(人).

∴估計該校喜歡體育類社團的學(xué)生有600人.【點睛】此題主要考查了條形圖與統(tǒng)計表以及扇形圖的綜合應(yīng)用,由條形圖與扇形圖結(jié)合得出調(diào)查的總?cè)藬?shù)是解決問題的關(guān)鍵,學(xué)會用樣本估計總體的思想,屬于中考??碱}型.23、(1);;(2)點P坐標(biāo)為(,).【解析】

(1)將F(4,)代入,即可求出反比例函數(shù)的解析式;再根據(jù)求出E點坐標(biāo),將E、F兩點坐標(biāo)代入,即可求出一次函數(shù)解析式;(2)先求出△EBF的面積,點P是線段EF上一點,可設(shè)點P坐標(biāo)為,根據(jù)面積公式即可求出P點坐標(biāo).【詳解】解:(1)∵反比例函數(shù)經(jīng)過點,∴n=2,反比例函數(shù)解析式為.∵的圖象經(jīng)過點E(1,m),∴m=2,點E坐標(biāo)為(1,2).∵直線過點,點,∴,解得,∴一次函數(shù)解析式為;(2)∵點E坐標(biāo)為(1,2),點F坐標(biāo)為,∴點B坐標(biāo)為(4,2),∴BE=3,BF=,∴,∴.點P是線段EF上一點,可設(shè)點P坐標(biāo)為,∴,解得,∴點P坐標(biāo)為.【點睛】本題主要考查反比例函數(shù),一次函數(shù)的解析式以及三角形的面積公式.24、(1);(1);(3);【解析】

(1)直接根據(jù)概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結(jié)果數(shù),再找出一個徑賽項目和一個田賽項目的結(jié)果數(shù),然后根據(jù)概率公式計算一個徑賽項目和一個田賽項目的概率P1;(3)找出兩個項目都是徑賽項目的結(jié)果數(shù),然后根據(jù)概率公式計算兩個項目都是徑賽項目的概率P1.【詳解】解:(1)該同學(xué)從5個項目中任選一個,恰好是田賽項目的概率P=;(1)畫樹狀圖為:共有10種等可能的結(jié)果數(shù),其中一個徑賽項目和一個田賽項目的結(jié)果數(shù)為11,所以一個徑賽項目和一個田賽項目的概率P1==;(3)兩個項目都是徑賽項目的結(jié)果數(shù)為6,所以兩個項目都是徑賽項目的概率P1==.故答案為.考點:列表法與樹狀圖法.25、(1)證明見解析;(2)CD=2.【解析】

(1)根據(jù)三角函數(shù)的概念可知tanA=,cos∠BCD=,根據(jù)tanA=2cos∠BCD即可得結(jié)論;(2)由∠B的余弦值和(1)的結(jié)論即可求得BD,利用勾股定理求得CD即可.【詳解】(1)∵tanA=,cos∠BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論