第十章界面現(xiàn)象物理化學_第1頁
第十章界面現(xiàn)象物理化學_第2頁
第十章界面現(xiàn)象物理化學_第3頁
第十章界面現(xiàn)象物理化學_第4頁
第十章界面現(xiàn)象物理化學_第5頁
已閱讀5頁,還剩122頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第十章界面現(xiàn)象2024/10/1410.1表面吉布斯自由能和表面張力表面和界面界面現(xiàn)象的本質比表面分散度與比表面表面功表面自由能表面張力界面張力與溫度的關系影響表面張力的因素2024/10/14表面和界面(surfaceandinterface)界面是指兩相接觸的約幾個分子厚度的過渡區(qū),若其中一相為氣體,這種界面通常稱為表面。常見的界面有:氣-液界面,氣-固界面,液-液界面,液-固界面,固-固界面。嚴格講表面應是液體和固體與其飽和蒸氣之間的界面,但習慣上把液體或固體與空氣的界面稱為液體或固體的表面。2024/10/14表面和界面(surfaceandinterface)常見的界面有:1.氣-液界面2024/10/14表面和界面(surfaceandinterface)2.氣-固界面2024/10/14表面和界面(surfaceandinterface)3.液-液界面2024/10/14表面和界面(surfaceandinterface)4.液-固界面2024/10/14表面和界面(surfaceandinterface)5.固-固界面2024/10/14界面現(xiàn)象的本質對于單組分體系,這種特性主要來自于同一物質在不同相中的密度不同;對于多組分體系,則特性來自于界面層的組成與任一相的組成均不相同。表面層分子與內部分子相比,它們所處的環(huán)境不同。

體相內部分子所受四周鄰近相同分子的作用力是對稱的,各個方向的力彼此抵銷;

但是處在界面層的分子,一方面受到體相內相同物質分子的作用,另一方面受到性質不同的另一相中物質分子的作用,其作用力未必能相互抵銷,因此,界面層會顯示出一些獨特的性質。2024/10/14界面現(xiàn)象的本質

最簡單的例子是液體及其蒸氣組成的表面。

液體內部分子所受的力可以彼此抵銷,但表面分子受到體相分子的拉力大,受到氣相分子的拉力?。ㄒ驗闅庀嗝芏鹊停?,所以表面分子受到被拉入體相的作用力。

這種作用力使表面有自動收縮到最小的趨勢,并使表面層顯示出一些獨特性質,如表面張力、表面吸附、毛細現(xiàn)象、過飽和狀態(tài)等。2024/10/14比表面(specificsurfacearea)比表面通常用來表示物質分散的程度,有兩種常用的表示方法:一種是單位質量的固體所具有的表面積;另一種是單位體積固體所具有的表面積。即:式中,m和V分別為固體的質量和體積,A為其表面積。目前常用的測定表面積的方法有BET法和色譜法。2024/10/14分散度與比表面把物質分散成細小微粒的程度稱為分散度。把一定大小的物質分割得越小,則分散度越高,比表面也越大。例如,把邊長為1cm的立方體1cm3逐漸分割成小立方體時,比表面增長情況列于下表:邊長l/m立方體數(shù)比表面Av/(m2/m3)1×10-216×102

1×10-31036×103

1×10-51096×105

1×10-710156×107

1×10-910216×109

2024/10/14分散度與比表面

從表上可以看出,當將邊長為10-2m的立方體分割成10-9m的小立方體時,比表面增長了一千萬倍。邊長l/m立方體數(shù)比表面Av/(m2/m3)1×10-216×102

1×10-31036×103

1×10-51096×105

1×10-710156×107

1×10-910216×109

可見達到nm級的超細微粒具有巨大的比表面積,因而具有許多獨特的表面效應,成為新材料和多相催化方面的研究熱點。2024/10/14表面張力(surfacetension)

在兩相(特別是氣-液)界面上,處處存在著一種張力,它垂直與表面的邊界,指向液體方向并與表面相切。將一含有一個活動邊框的金屬線框架放在肥皂液中,然后取出懸掛,活動邊在下面。由于金屬框上的肥皂膜的表面張力作用,可滑動的邊會被向上拉,直至頂部。

把作用于單位邊界線上的這種力稱為表面張力,用g表示,單位是N·m-1。2024/10/14表面張力(surfacetension)如果在活動邊框上掛一重物,使重物質量W2與邊框質量W1所產生的重力F(F=(W1+W2)g)與總的表面張力大小相等方向相反,則金屬絲不再滑動。這時

l是滑動邊的長度,因膜有兩個面,所以邊界總長度為2l,就是作用于單位邊界上的表面張力。2024/10/14表面張力(surfacetension)

如果在金屬線框中間系一線圈,一起浸入肥皂液中,然后取出,上面形成一液膜。(a)(b)

由于以線圈為邊界的兩邊表面張力大小相等方向相反,所以線圈成任意形狀可在液膜上移動,見(a)圖。

如果刺破線圈中央的液膜,線圈內側張力消失,外側表面張力立即將線圈繃成一個圓形,見(b)圖,清楚的顯示出表面張力的存在。2024/10/14表面張力(surfacetension)(a)(b)2024/10/14表面功(surfacework)式中為比例系數(shù),它在數(shù)值上等于當T,P及組成恒定的條件下,增加單位表面積時所必須對體系做的可逆非膨脹功。由于表面層分子的受力情況與本體中不同,因此如果要把分子從內部移到界面,或可逆的增加表面積,就必須克服體系內部分子之間的作用力,對體系做功。溫度、壓力和組成恒定時,可逆使表面積增加dA所需要對體系作的功,稱為表面功。用公式表示為:2024/10/14表面自由能(surfacefreeenergy)由此可得:考慮了表面功,熱力學基本公式中應相應增加dA一項,即:2024/10/14表面自由能(surfacefreeenergy)

廣義的表面自由能定義:

狹義的表面自由能定義:保持溫度、壓力和組成不變,每增加單位表面積時,Gibbs自由能的增加值稱為表面Gibbs自由能,或簡稱表面自由能或表面能,用符號或表示,單位為J·m-2。保持相應的特征變量不變,每增加單位表面積時,相應熱力學函數(shù)的增值。2024/10/14界面張力與溫度的關系溫度升高,界面張力下降,當達到臨界溫度Tc時,界面張力趨向于零。這可用熱力學公式說明:因為運用全微分的性質,可得:等式左方為正值,因為表面積增加,熵總是增加的。所以隨T的增加而下降。2024/10/14影響表面張力的因素(1)分子間相互作用力的影響(2)溫度的影響溫度升高,表面張力下降。(3)壓力的影響

表面張力一般隨壓力的增加而下降。因為壓力增加,氣相密度增加,表面分子受力不均勻性略有好轉。另外,若是氣相中有別的物質,則壓力增加,促使表面吸附增加,氣體溶解度增加,也使表面張力下降。對純液體或純固體,表面張力決定于分子間形成的化學鍵能的大小,一般化學鍵越強,表面張力越大。(金屬鍵)>(離子鍵)>(極性共價鍵)>(非極性共價鍵)兩種液體間的界面張力,界于兩種液體表面張力之間。2024/10/1410.2彎曲表面下的附加壓力與蒸氣壓

彎曲表面下的附加壓力1.在平面上2.在凸面上3.在凹面上

Young-Laplace公式

Klvin公式2024/10/14彎曲表面下的附加壓力1.在平面上剖面圖液面正面圖研究以AB為直徑的一個環(huán)作為邊界,由于環(huán)上每點的兩邊都存在表面張力,大小相等,方向相反,所以沒有附加壓力。設向下的大氣壓力為Po,向上的反作用力也為Po

,附加壓力Ps等于零。Ps

=Po-

Po=02024/10/14彎曲表面下的附加壓力(2)在凸面上:剖面圖附加壓力示意圖研究以AB為弦長的一個球面上的環(huán)作為邊界。由于環(huán)上每點兩邊的表面張力都與液面相切,大小相等,但不在同一平面上,所以會產生一個向下的合力。所有的點產生的總壓力為Ps,稱為附加壓力。凸面上受的總壓力為:Po+

PsPo為大氣壓力,Ps為附加壓力。2024/10/14彎曲表面下的附加壓力(3)在凹面上:剖面圖附加壓力示意圖研究以AB為弦長的一個球形凹面上的環(huán)作為邊界。由于環(huán)上每點兩邊的表面張力都與凹形的液面相切,大小相等,但不在同一平面上,所以會產生一個向上的合力。所有的點產生的總壓力為Ps,稱為附加壓力。凹面上向下的總壓力為:Po-Ps

,所以凹面上所受的壓力比平面上小。2024/10/14楊-拉普拉斯公式1805年Young-Laplace導出了附加壓力與曲率半徑之間的關系式:

根據(jù)數(shù)學上規(guī)定,凸面的曲率半徑取正值,凹面的曲率半徑取負值。所以,凸面的附加壓力指向液體,凹面的附加壓力指向氣體,即附加壓力總是指向球面的球心。2024/10/14附加壓力與毛細管中液面高度的關系1.曲率半徑R'與毛細管半徑R的關系:

R'=R/cosq2.

ps=2g/R'=(rl-rg)gh如果曲面為球面,則R'=R。因rl>>rg所以:ps=2g/R'=rlgh一般式:2gcosq/R=Drgh2024/10/14彎曲表面上的蒸汽壓——開爾文公式對小液滴與蒸汽的平衡,應有相同形式,設氣體為理想氣體。液體(T,pl)

飽和蒸汽(T,pg)2024/10/14彎曲表面上的蒸汽壓——開爾文公式這就是Kelvin公式,式中r為密度,M為摩爾質量。2024/10/14彎曲表面上的蒸汽壓——開爾文公式

Kelvin公式也可以表示為兩種不同曲率半徑的液滴或蒸汽泡的蒸汽壓之比,或兩種不同大小顆粒的飽和溶液濃度之比。對凸面,R'取正值,R'越小,液滴的蒸汽壓越高, 或小顆粒的溶解度越大。對凹面,R'取負值,R'越小,小蒸汽泡中的蒸汽 壓越低。2024/10/14亞穩(wěn)狀態(tài)及新相的生成常見的亞穩(wěn)狀態(tài)有:過飽和蒸氣、過熱液體、過冷液體、過飽和溶液。2024/10/14常見的亞穩(wěn)態(tài)過飽和蒸氣OC:通常液體的飽和蒸氣壓曲線O′C′:微小液滴的飽和蒸氣壓曲線按照相平衡條件,應當凝結而未凝結的蒸氣稱為過飽和蒸氣。應用:噴灑微小AgI

顆粒的人工降雨。p

T正常T

l

gT小CC′AOO′p02024/10/14過熱液體按照相平衡條件,應當沸騰而不沸騰的液體稱為過熱液體。ρghp大氣壓

p假設在101.325kPa、100℃距離液面0.02m

的深度處有半徑為10nm的小氣泡,其承受的壓力:消除:投入沸石等。2024/10/14過冷液體O′C:平面液體的飽和蒸氣壓曲線

AO:普通晶體的飽和蒸氣壓曲線A′O′:微小晶體的飽和蒸氣壓曲線一定外壓下,溫度低于正常凝固點還不凝固的液體稱為過冷液體。TTf

<Tfp*A

AO

OC2024/10/14過飽和溶液一定溫度下,溶液濃度已超過飽和濃度而仍未析出晶體的溶液稱為過飽和溶液。同樣溫度下,小顆粒的溶解度大于普通晶體的溶解度。產生原因:消除:結晶操作中,溶液過飽和程度大會生成細小的晶粒,不利于后續(xù)操作。常采用投入晶體種子的方法,獲得較大顆粒的晶體。2024/10/14消除亞穩(wěn)態(tài)——加入新相的種子:沸石、晶種等;利用亞穩(wěn)態(tài)——金屬淬火等;小結——亞穩(wěn)態(tài)及其產生原因亞穩(wěn)態(tài):熱力學上不穩(wěn)定,但又能夠在一定條件下穩(wěn)定存在的狀態(tài)。產生的原因:新相的種子難以生成。2024/10/14固體表面的特性固體表面上的原子或分子與液體一樣,受力也是不均勻的,而且不像液體表面分子可以移動,通常它們是定位的。固體表面是不均勻的,即使從宏觀上看似乎很光滑,但從原子水平上看是凹凸不平的。同種晶體由于制備、加工不同,會具有不同的表面性質,而且實際晶體的晶面是不完整的,會有晶格缺陷、空位和位錯等。

正由于固體表面原子受力不對稱和表面結構不均勻性,它可以吸附氣體或液體分子,使表面自由能下降。而且不同的部位吸附和催化的活性不同。2024/10/14吸附劑和吸附質(adsorbent,adsorbate)當氣體或蒸汽在固體表面被吸附時,固體稱為吸附劑,被吸附的氣體稱為吸附質。常用的吸附劑有:硅膠、分子篩、活性炭等。為了測定固體的比表面,常用的吸附質有:氮氣、水蒸氣、苯或環(huán)己烷的蒸汽等。2024/10/14物理吸附具有如下特點的吸附稱為物理吸附:1.吸附力是由固體和氣體分子之間的范德華引力產生的,一般比較弱。2.吸附熱較小,接近于氣體的液化熱,一般在幾個

kJ/mol以下。3.吸附無選擇性,任何固體可以吸附任何氣體,當然吸附量會有所不同。2024/10/14物理吸附4.吸附穩(wěn)定性不高,吸附與解吸速率都很快。5.吸附可以是單分子層的,但也可以是多分子層的。6.吸附不需要活化能,吸附速率并不因溫度的升高而變快??傊何锢砦絻H僅是一種物理作用,沒有電子轉移,沒有化學鍵的生成與破壞,也沒有原子重排等。2024/10/14化學吸附具有如下特點的吸附稱為化學吸附:1.吸附力是由吸附劑與吸附質分子之間產生的化學鍵力,一般較強。2.吸附熱較高,接近于化學反應熱,一般在40kJ/mol

以上。3.吸附有選擇性,固體表面的活性位只吸附與之可發(fā)生反應的氣體分子,如酸位吸附堿性分子,反之亦然。2024/10/14化學吸附4.吸附很穩(wěn)定,一旦吸附,就不易解吸。5.吸附是單分子層的。6.吸附需要活化能,溫度升高,吸附和解吸速率加快??傊夯瘜W吸附相當與吸附劑表面分子與吸附質分子發(fā)生了化學反應,在紅外、紫外-可見光譜中會出現(xiàn)新的特征吸收帶。2024/10/14吸附量的表示吸附量通常有兩種表示方法:(2)單位質量的吸附劑所吸附氣體物質的量。(1)單位質量的吸附劑所吸附氣體的體積。

體積要換算成標準狀況(STP)2024/10/14吸附量與溫度、壓力的關系對于一定的吸附劑與吸附質的體系,達到吸附平衡時,吸附量是溫度和吸附質壓力的函數(shù),即:通常固定一個變量,求出另外兩個變量之間的關系,例如:(1)T=常數(shù),q=f(p),得吸附等溫線。(2)p=常數(shù),q=f(T),得吸附等壓線。(3)q=常數(shù),p=f(T),得吸附等量線。2024/10/14吸附等溫線的類型從吸附等溫線可以反映出吸附劑的表面性質、孔分布以及吸附劑與吸附質之間的相互作用等有關信息。常見的吸附等溫線有如下5種類型:(圖中p/ps稱為比壓,ps是吸附質在該溫度時的飽和蒸汽壓,p為吸附質的壓力)2024/10/14吸附等溫線的類型(Ⅰ)在2.5nm以下微孔吸附劑上的吸附等溫線屬于這種類型。例如78K時N2在活性炭上的吸附及水和苯蒸汽在分子篩上的吸附。2024/10/14吸附等溫線的類型(Ⅱ)常稱為S型等溫線。吸附劑孔徑大小不一,發(fā)生多分子層吸附。在比壓接近1時,發(fā)生毛細管和孔凝現(xiàn)象。2024/10/14吸附等溫線的類型(Ⅲ)這種類型較少見。當吸附劑和吸附質相互作用很弱時會出現(xiàn)這種等溫線,如352K時,Br2在硅膠上的吸附。2024/10/14吸附等溫線的類型(Ⅳ)多孔吸附劑發(fā)生多分子層吸附時會有這種等溫線。在比壓較高時,有毛細凝聚現(xiàn)象。例如在323K時,苯在氧化鐵凝膠上的吸附屬于這種類型。2024/10/14吸附等溫線的類型(Ⅴ)發(fā)生多分子層吸附,有毛細凝聚現(xiàn)象。例如373K時,水汽在活性炭上的吸附屬于這種類型。2024/10/14毛細凝聚現(xiàn)象設吸附劑的孔為一端開口半徑為R'的圓筒,R'的大小屬于中孔范圍,可以應用Kelvin公式。設液體能完全潤濕孔壁,這樣所得的吸附等溫線如圖(a)所示。AB線段代表低壓下的吸附,當壓力達到折點處,發(fā)生毛細凝聚,即蒸汽變成液體在毛細管中凝聚,吸附量迅速增加。這是因為液體能潤濕固體,在孔中液面呈彎月形,如圖(b)所示。2024/10/14毛細凝聚現(xiàn)象根據(jù)Kelvin公式,凹面上的蒸汽壓比平面上小,所以在小于飽和蒸汽壓時,凹面上已達飽和而發(fā)生凝聚,這就是毛細凝聚現(xiàn)象。在測量固體比表面時,采用低壓,因為發(fā)生毛細凝聚后會使結果偏高。繼續(xù)增加壓力,凝聚液體增多,當達到圖(b)中的b線處,液面成平面,這時的吸附等溫線如CD線所示。2024/10/14研究氣體吸附實驗的方法

比表面,孔容和孔分布是多孔催化劑和吸附劑的重要參數(shù),這些參數(shù)通常可以從吸附實驗得到。常用的測定方法分為靜態(tài)法和動態(tài)法兩大類,在靜態(tài)法中又可分為重量法和容量法兩種。在測定固體的吸附量之前,必須將固體表面原有吸附的氣體和蒸汽脫附。脫附過程一般在加熱和真空的條件下進行,真空度在0.01Pa以下脫附2小時,加熱的溫度根據(jù)吸附劑的性質而定,防止溫度太高而影響吸附劑的結構。2024/10/14吸附等溫線保持溫度不變,顯示吸附量與比壓之間的關系曲線稱為吸附等溫線??v坐標是吸附量,橫坐標是比壓p/ps,p是吸附質蒸汽的平衡壓力,ps是吸附溫度時吸附質的飽和蒸汽壓。通常將比壓控制在0.3以下,防止毛細凝聚而使結果偏高。2024/10/14吸附等溫線樣品脫附后,設定一個溫度,如253K,控制吸附質不同的壓力,根據(jù)石英彈簧的伸長可以計算出相應的吸附量,就可以畫出一根253K時的吸附等溫線,如圖所示。用相同的方法,改變吸附恒溫浴的溫度,可以測出一組不同溫度下的吸附等溫線。2024/10/14吸附等壓線保持壓力不變,吸附量與溫度之間的關系曲線稱為吸附等壓線。吸附等壓線不是用實驗直接測量的,而是在實驗測定等溫線的基礎上畫出來的。在實驗測定的一組吸附等溫線上,選定比壓為0.1,作垂線與各等溫線相交。2024/10/14吸附等壓線根據(jù)交點的吸附量和溫度,作出一條q~T曲線,這就是比壓為0.1時的等壓線。用相同的方法,選定不同的比壓,可以畫出一組吸附等壓線。從圖上可見,保持比壓不變,吸附量隨著溫度的升高而下降。2024/10/14吸附等量線保持吸附量不變,壓力與溫度之間的關系曲線稱為吸附等量線。吸附等量線不是用實驗直接測量的,而是在實驗測定等溫線的基礎上畫出來的。在實驗測定的一組吸附等溫線上,選定吸附量為q1,作水平線與各等溫線相交。2024/10/14吸附等量線根據(jù)交點的溫度與壓力,畫出一條p~T線,這就是吸附量為q1時的吸附等量線。選定不同的吸附量,可以畫出一組吸附等量線。從圖上可見,保持吸附量不變,當溫度升高時,壓力也要相應增高。從等量線上可以求出吸附熱。2024/10/14Langmuir吸附等溫式

Langmuir吸附等溫式描述了吸附量與被吸附蒸汽壓力之間的定量關系。他在推導該公式的過程引入了兩個重要假設:(1)吸附是單分子層的;(2)固體表面是均勻的,被吸附分子之間無相互作用。設:表面覆蓋度q=V/Vm

Vm為吸滿單分子層的體積則空白表面為(1-q)V為吸附體積達到平衡時,吸附與脫附速率相等。r(吸附)=kap(1-q)r(脫附)=kdq2024/10/14Langmuir吸附等溫式得:r(吸附)=kap(1-q)r(脫附)=kdq=ka=p(1-q)=kdq設b=ka/kd這公式稱為Langmuir吸附等溫式,式中b稱為吸附系數(shù),它的大小代表了固體表面吸附氣體能力的強弱程度。2024/10/14Langmuir吸附等溫式以q

對p

作圖,得:2024/10/14Langmuir吸附等溫式1.當p很小,或吸附很弱時,bp<<1,q=bp,q

與p

成線性關系。2.當p很大或吸附很強時,bp>>1,q=1,q與p無關,吸附已鋪滿單分子層。3.當壓力適中,q∝pm,m介于0與1之間。2024/10/14Langmuir吸附等溫式m為吸附劑質量重排后可得:p/V=1/Vma+p/Vm這是Langmuir吸附公式的又一表示形式。用實驗數(shù)據(jù),以p/V~p作圖得一直線,從斜率和截距求出吸附系數(shù)b和鋪滿單分子層的氣體體積Vm。將q=V/Vm代入Langmuir吸附公式

Vm是一個重要參數(shù)。從吸附質分子截面積Am,可計算吸附劑的總表面積S和比表面A。2024/10/14Langmuir吸附等溫式對于一個吸附質分子吸附時解離成兩個粒子的吸附達到吸附平衡時:則Langmuir吸附等溫式可以表示為:2024/10/14Langmuir吸附等溫式當A和B兩種粒子都被吸附時,A和B分子的吸附與解吸速率分別為:達吸附平衡時,ra

=rd2024/10/14Langmuir吸附等溫式兩式聯(lián)立解得qA,qB分別為:對i種氣體混合吸附的Lngmuir吸附公式為:2024/10/14Langmuir吸附等溫式1.假設吸附是單分子層的,與事實不符。2.假設表面是均勻的,其實大部分表面是不均勻的。3.在覆蓋度q較大時,Langmuir吸附等溫式不適用。Langmuir吸附等溫式的缺點:2024/10/14Freundlich吸附等溫式Freundlich吸附等溫式有兩種表示形式:q:吸附量,cm3/gk,n是與溫度、體系有關的常數(shù)。x:吸附氣體的質量m:吸附劑質量k’,n是與溫度、體系有關的常數(shù)。Freundlich吸附公式對q的適用范圍比Langmuir公式要寬。2024/10/14BET公式由Brunauer-Emmett-Teller三人提出的多分子層吸附公式簡稱BET公式。他們接受了Langmuir理論中關于固體表面是均勻的觀點,但他們認為吸附是多分子層的。當然第一層吸附與第二層吸附不同,因為相互作用的對象不同,因而吸附熱也不同,第二層及以后各層的吸附熱接近與凝聚熱。在這個基礎上他們導出了BET吸附二常數(shù)公式。2024/10/14BET公式式中兩個常數(shù)為c和Vm,c是與吸附熱有關的常數(shù),Vm為鋪滿單分子層所需氣體的體積。p和V分別為吸附時的壓力和體積,ps是實驗溫度下吸附質的飽和蒸汽壓。2024/10/14BET公式為了使用方便,將二常數(shù)公式改寫為:用實驗數(shù)據(jù) 對 作圖,得一條直線。從直線的斜率和截距可計算兩個常數(shù)值c和Vm,從Vm可以計算吸附劑的比表面:Am是吸附質分子的截面積,要換算到標準狀態(tài)(STP)。2024/10/14BET公式 為了計算方便起見,二常數(shù)公式較常用,比壓一般控制在0.05~0.35之間。

比壓太低,建立不起多分子層物理吸附;

比壓過高,容易發(fā)生毛細凝聚,使結果偏高。2024/10/14BET公式如果吸附層不是無限的,而是有一定的限制,例如在吸附劑孔道內,至多只能吸附n層,則BET公式修正為三常數(shù)公式:若n=1,為單分子層吸附,上式可以簡化為Langmuir公式。若n=∞,(p/ps)∞→0,上式可轉化為二常數(shù)公式。三常數(shù)公式一般適用于比壓在0.35~0.60之間的吸附。2024/10/14吸附熱

吸附熱的定義:

吸附熱的取號:在吸附過程中的熱效應稱為吸附熱。物理吸附過程的熱效應相當于氣體凝聚熱,很??;化學吸附過程的熱效應相當于化學鍵能,比較大。吸附是放熱過程,但是習慣把吸附熱都取成正值。固體在等溫、等壓下吸附氣體是一個自發(fā)過程,ΔG<0,氣體從三維運動變成吸附態(tài)的二維運動,熵減少,ΔS<0,ΔH=ΔG+TΔS,ΔH<0。2024/10/14吸附熱的分類

積分吸附熱

微分吸附熱等溫條件下,一定量的固體吸附一定量的氣體所放出的熱,用Q表示。積分吸附熱實際上是各種不同覆蓋度下吸附熱的平均值。顯然覆蓋度低時的吸附熱大。在吸附劑表面吸附一定量氣體q后,再吸附少量氣體dq時放出的熱dQ,用公式表示吸附量為q時的微分吸附熱為:2024/10/14吸附熱的測定(1)直接用實驗測定在高真空體系中,先將吸附劑脫附干凈,然后用精密的量熱計測量吸附一定量氣體后放出的熱量。這樣測得的是積分吸附熱。(2)從吸附等量線求算在一組吸附等量線上求出不同溫度下的(

p/

T)q值,再根據(jù)克勞修斯-克萊貝龍方程得式中Q就是某一吸附量時的等量吸附熱,近似的看作微分吸附熱.(3)色譜法用氣相色譜技術測定吸附熱。2024/10/14從吸附熱衡量催化劑的優(yōu)劣吸附熱的大小反映了吸附強弱的程度。一種好的催化劑必須要吸附反應物,使它活化,這樣吸附就不能太弱,否則達不到活化的效果。但也不能太強,否則反應物不易解吸,占領了活性位就變成毒物,使催化劑很快失去活性。好的催化劑吸附的強度應恰到好處,太強太弱都不好,并且吸附和解吸的速率都應該比較快。2024/10/14從吸附熱衡量催化劑的優(yōu)劣例如,合成氨反應,為什么選用鐵作催化劑?因為合成氨是通過吸附的氮與氫起反應而生成氨的。這就需要催化劑對氨的吸附既不太強,又不太弱,恰好使N2吸附后變成原子狀態(tài)。而鐵系元素作催化劑符合這種要求。2024/10/14從吸附熱衡量催化劑的優(yōu)劣如圖所示,橫坐標是各族元素,左邊坐標表示對氮的起始化學吸附熱,右邊坐標表示氨的合成速率。吸附熱沿DE線上升,合成速率沿AB上升。速率達到最高點B后,吸附熱繼續(xù)上升,由于吸附太強,合成速率反而下降。對應B點的是第八族第一列鐵系元素。2024/10/14從吸附熱衡量催化劑的優(yōu)劣2024/10/14液體的鋪展一種液體能否在另一種不互溶的液體上鋪展,取決于兩種液體本身的表面張力和兩種液體之間的界面張力。一般說,鋪展后,表面自由能下降,則這種鋪展是自發(fā)的。大多數(shù)表面自由能較低的有機物可以在表面自由能較高的水面上鋪展。2024/10/14液體的鋪展設液體1和2的表面張力和界面張力分別為g1,g,

g2,g和g1,2。12g1,gg1,2g2,g在三相接界點處,g1,g和g1,2的作用力企圖維持液體1不鋪展;而g2,g的作用是使液體鋪展,如果g2,g>(g1,g+g1,2),則液體1能在液體2上鋪展。2024/10/14液-固界面現(xiàn)象粘附功浸濕功內聚功鋪展系數(shù)接觸角2024/10/14粘附功(workofadhesion)在等溫等壓條件下,單位面積的液面與固體表面粘附時對外所作的最大功稱為粘附功,它是液體能否潤濕固體的一種量度。粘附功越大,液體越能潤濕固體,液-固結合得越牢。

在粘附過程中,消失了單位液體表面和固體表面,產生了單位液-固界面。粘附功就等于這個過程表面吉布斯自由能變化值的負值。2024/10/14粘附功(workofadhesion)2024/10/14浸濕功(workofimmersion)等溫、等壓條件下,將具有單位表面積的固體可逆地浸入液體中所作的最大功稱為浸濕功,它是液體在固體表面取代氣體能力的一種量度。只有浸濕功大于或等于零,液體才能浸濕固體。在浸濕過程中,消失了單位面積的氣、固表面,產生了單位面積的液、固界面,所以浸濕功等于該變化過程表面自由能變化值的負值。2024/10/14浸濕功(workofimmersion)2024/10/14內聚功(workofcohesion)等溫、等壓條件下,兩個單位液面可逆聚合為液柱所作的最大功稱為內聚功,是液體本身結合牢固程度的一種量度。內聚時兩個單位液面消失,所以,內聚功在數(shù)值上等于該變化過程表面自由能變化值的負值。2024/10/14內聚功(workofcohesion)2024/10/14鋪展系數(shù)(spreadingcoefficient)等溫、等壓條件下,單位面積的液固界面取代了單位面積的氣固界面并產生了單位面積的氣液界面,這過程表面自由能變化值的負值稱為鋪展系數(shù),用S表示。若S≥0,說明液體可以在固體表面自動鋪展。2024/10/14鋪展系數(shù)(spreadingcoefficient)2024/10/14接觸角(contactangle)在氣、液、固三相交界點,氣-液與氣-固界面張力之間的夾角稱為接觸角,通常用q表示。若接觸角大于90°,說明液體不能潤濕固體,如汞在玻璃表面;若接觸角小于90°,液體能潤濕固體,如水在潔凈的玻璃表面。接觸角的大小可以用實驗測量,也可以用公式計算:2024/10/14接觸角(contactangle)接觸角的示意圖:2024/10/14表面活性物質能使水的表面張力明顯降低的溶質稱為表面活性物質。這種物質通常含有親水的極性基團和憎水的非極性碳鏈或碳環(huán)有機化合物。親水基團進入水中,憎水基團企圖離開水而指向空氣,在界面定向排列。表面活性物質的表面濃度大于本體濃度,增加單位面積所需的功較純水小。非極性成分愈大,表面活性也愈大。2024/10/14非表面活性物質能使水的表面張力明顯升高的溶質稱為非表面活性物質。如無機鹽和不揮發(fā)的酸、堿等。這些物質的離子有水合作用,趨向于把水分子拖入水中,非表面活性物質在表面的濃度低于在本體的濃度。如果要增加單位表面積,所作的功中還必須包括克服靜電引力所消耗的功,所以表面張力升高。2024/10/14Gibbs吸附公式它的物理意義是:在單位面積的表面層中,所含溶質的物質的量與具有相同數(shù)量溶劑的本體溶液中所含溶質的物質的量之差值。即:

式中G2為溶劑超量為零時溶質2在表面的超額。a2是溶質2的活度,dg/da2是在等溫下,表面張力g隨溶質活度的變化率。2024/10/14正吸附和負吸附吉布斯吸附公式通常也表示為如下形式:1.dg/dc2<0,增加溶質2的濃度使表面張力下降,G2為正值,是正吸附。表面層中溶質濃度大于本體濃度。表面活性物質屬于這種情況。2.dg/dc2>0,增加溶質2的濃度使表面張力升高,G2為負值,是負吸附。表面層中溶質濃度低于本體濃度。非表面活性物質屬于這種情況。2024/10/14兩親分子在氣液界面上的定向排列

根據(jù)實驗,脂肪酸在水中的濃度達到一定數(shù)值后,它在表面層中的超額為一定值,與本體濃度無關,并且和它的碳氫鏈的長度也無關。這時,表面吸附已達到飽和,脂肪酸分子合理的排列是羧基向水,碳氫鏈向空氣。2024/10/14兩親分子在氣液界面上的定向排列根據(jù)這種緊密排列的形式,可以計算每個分子所占的截面積Am。式中L為阿伏加德羅常數(shù),G2原來是表面超額,當達到飽和吸附時,G2可以作為單位表面上溶質的物質的量。2024/10/14表面活性劑分類表面活性劑通常采用按化學結構來分類,分為離子型和非離子型兩大類,離子型中又可分為陽離子型、陰離子型和兩性型表面活性劑。顯然陽離子型和陰離子型的表面活性劑不能混用,否則可能會發(fā)生沉淀而失去活性作用。1.離子型2.非離子型陽離子型陰離子型兩性型表面活性劑2024/10/14常用表面活性劑類型陰離子表面活性劑RCOONa

羧酸鹽R-OSO3Na

硫酸酯鹽R-SO3Na

磺酸鹽R-OPO3Na2

磷酸酯鹽2024/10/14常用表面活性劑類型陽離子表面活性劑R-NH2·HCl

伯胺鹽

CH3|R-N-HCl

仲胺鹽|H

CH3|R-N-HCl

叔胺鹽|

CH3

CH3|R-N+-CH3Cl-

季胺鹽|CH32024/10/14常用表面活性劑類型兩性表面活性劑R-NHCH2-CH2COOH氨基酸型

CH3|R-N+-CH2COO-

甜菜堿型|CH32024/10/14常用表面活性劑類型R-(C6H4)-O(C2H4O)nH

烷基酚聚氧乙烯醚非離子表面活性劑R2N-(C2H4O)nH

聚氧乙烯烷基胺R-CONH(C2H4O)nH

聚氧乙烯烷基酰胺R-COOCH2(CHOH)3H

多元醇型R-O-(CH2CH2O)nH

脂肪醇聚氧乙烯醚2024/10/14表面活性劑效率和有效值表面活性劑效率使水的表面張力明顯降低所需要的表面活性劑的濃度。顯然,所需濃度愈低,表面活性劑的性能愈好。表面活性劑有效值能夠把水的表面張力降低到的最小值。顯然,能把水的表面張力降得愈低,該表面活性劑愈有效。

表面活性劑的效率與有效值在數(shù)值上常常是相反的。例如,當憎水基團的鏈長增加時,效率提高而有效值降低。2024/10/14膠束(micelle)表面活性劑是兩親分子。溶解在水中達一定濃度時,其非極性部分會自相結合,形成聚集體,使憎水基向里、親水基向外,這種多分子聚集體稱為膠束。隨著親水基不同和濃度不同,形成的膠束可呈現(xiàn)棒狀、層狀或球狀等多種形狀。2024/10/14膠束(micelle)2024/10/14膠束(micelle)2024/10/14膠束(micelle)2024/10/14膠束(micelle)2024/10/14臨界膠束濃度(criticalmicelleconcentration)臨界膠束濃度簡稱CMC

表面活性劑在水中隨著濃度增大,表面上聚集的活性劑分子形成定向排列的緊密單分子層,多余的分子在體相內部也三三兩兩的以憎水基互相靠攏,聚集在一起形成膠束,這開始形成膠束的最低濃度稱為臨界膠束濃度。

這時溶液性質與理想性質發(fā)生偏離,在表面張力對濃度繪制的曲線上會出現(xiàn)轉折。繼續(xù)增加活性劑濃度,表面張力不再降低,而體相中的膠束不斷增多、增大。2024/10/14臨界膠束濃度(criticalmicelleconcentration)2024/10/14親水親油平衡(hydrophile-lipophilebalance)表面活性劑都是兩親分子,由于親水和親油基團的不同,很難用相同的單位來衡量,所以Griffin提出了用一個相對的值即HLB值來表示表面活性物質的親水性。對非離子型的表面活性劑,HLB的計算公式為:HLB值=親水基質量親水基質量+憎水基質量×100/5例如:石蠟無親水基,所以HLB=0 聚乙二醇,全部是親水基,HLB=20。其余非離子型表面活性劑的HLB值介于0~20之間。2024

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論