2025屆湖南省長沙市地質(zhì)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2025屆湖南省長沙市地質(zhì)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2025屆湖南省長沙市地質(zhì)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2025屆湖南省長沙市地質(zhì)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2025屆湖南省長沙市地質(zhì)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆湖南省長沙市地質(zhì)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐O—ABC,點M,N分別為線段AB,OC的中點,且,,,用,,表示,則等于()A. B.C. D.2.已知函數(shù)(其中)的部分圖像如圖所示,則函數(shù)的解析式為()A. B.C. D.3.已知條件:,條件:表示一個橢圓,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.數(shù)列1,-3,5,-7,9,…的一個通項公式為A. B.C. D.5.已知函數(shù),則下列說法正確的是()A.的最小正周期為 B.的圖象關(guān)于直線C.的一個零點為 D.在區(qū)間的最小值為16.古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,著作中有這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0),動點P(x,y)滿,則動點P軌跡與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切7.已知函數(shù),,若對于任意的,存在唯一的,使得,則實數(shù)a的取值范圍是()A(e,4) B.(e,4]C.(e,4) D.(,4]8.如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A,B,交其準線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()A.y2=9x B.y2=6xC.y2=3x D.y2=x9.在等差數(shù)列中,若,且前n項和有最大值,則使得的最大值n為()A.15 B.16C.17. D.1810.“”是直線與直線平行的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.函數(shù)在上的最小值為()A. B.C.-1 D.12.已知橢圓上一點到左焦點的距離為,是的中點,則()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知橢圓E的方程為(a>b>0),A為橢圓的左頂點,B,C在橢圓上,若四邊形OABC為平行四邊形,且∠OAB=30°,則橢圓的離心率等于________14.如圖,棱長為1的正方體,點沿正方形按的方向作勻速運動,點沿正方形按的方向以同樣的速度作勻速運動,且點分別從點A與點同時出發(fā),則的中點的軌跡所圍成圖形的面積大小是________.15.函數(shù)極值點的個數(shù)是______16.曲線在點處的切線與坐標軸圍成的三角形面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:,斜率為的直線l與橢圓C交于A、B兩點且(1)求橢圓C的離心率;(2)求直線l的方程18.(12分)已知圓.(1)若直線與圓相交于兩點,弦的中點為,求直線的方程;(2)若斜率為1的直線被圓截得的弦為,以為直徑的圓經(jīng)過圓的圓心,求直線的方程.19.(12分)如圖,四棱錐的底面為正方形,底面,設(shè)平面與平面的交線為.(1)證明:;(2)已知,為直線上的點,求與平面所成角的正弦值的最大值.20.(12分)如圖,在多面體ABCDEF中,四邊形ABCD是菱形,∠ABC=60°,F(xiàn)A⊥平面ABCD,ED//FA,且AB=FA=2ED=2(1)求證:平面FAC⊥平面EFC;(2)求多面體ABCDEF的體積21.(12分)已知橢圓:的一個頂點為,離心率為,直線與橢圓交于不同的兩點M,N(1)求橢圓的標準方程;(2)當?shù)拿娣e為時,求的值22.(10分)已知函數(shù),其中為常數(shù),且(1)求證:時,;(2)已知a,b,p,q為正實數(shù),滿足,比較與的大小關(guān)系.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用空間向量基本定理進行計算.【詳解】.故選:A2、B【解析】根據(jù)題圖有且,結(jié)合五點法求參數(shù),即可得的解析式.【詳解】由圖知:且,則,所以,則,即,又,可得,,則,,又,即有.綜上,.故選:B3、B【解析】根據(jù)曲線方程,結(jié)合充分、必要性的定義判斷題設(shè)條件間的關(guān)系.【詳解】由,若,則表示一個圓,充分性不成立;而表示一個橢圓,則成立,必要性成立.所以是的必要不充分條件.故選:B4、C【解析】觀察,奇偶相間排列,偶數(shù)位置為負,所以為,數(shù)字是奇數(shù),滿足2n-1,所以可求得通項公式.【詳解】由符號來看,奇數(shù)項為正,偶數(shù)項為負,所以符號滿足,由數(shù)值1,3,5,7,9…顯然滿足奇數(shù),所以滿足2n-1,所以通項公式為,選C.【點睛】本題考查觀察法求數(shù)列的通項公式,解題的關(guān)鍵是培養(yǎng)對數(shù)字的敏銳性,屬于基礎(chǔ)題.5、D【解析】根據(jù)余弦函數(shù)的圖象與性質(zhì)判斷其周期、對稱軸、零點、最值即可.【詳解】函數(shù),周期為,故A錯誤;函數(shù)圖像的對稱軸為,,,不是對稱軸,故B錯誤;函數(shù)的零點為,,,所以不是零點,故C錯誤;時,,所以,即,所以,故D正確.故選:D6、A【解析】首先求得點的軌跡,再利用圓心距與半徑的關(guān)系,即可判斷兩圓的位置關(guān)系.【詳解】由條件可知,,化簡為:,動點的軌跡是以為圓心,2為半徑的圓,圓是以為圓心,為半徑的圓,兩圓圓心間的距離,所以兩圓相交.故選:A7、B【解析】結(jié)合導(dǎo)數(shù)和二次函數(shù)的性質(zhì)可求出和的值域,結(jié)合已知條件可得,,從而可求出實數(shù)a的取值范圍.【詳解】解:g(x)=x2ex的導(dǎo)函數(shù)為g′(x)=2xex+x2ex=x(x+2)ex,當時,,由時,,時,,可得g(x)在[–1,0]上單調(diào)遞減,在(0,1]上單調(diào)遞增,故g(x)在[–1,1]上的最小值為g(0)=0,最大值為g(1)=e,所以對于任意的,.因為開口向下,對稱軸為軸,又,所以當時,,當時,,則函數(shù)在[,2]上的值域為[a–4,a],且函數(shù)f(x)在,圖象關(guān)于軸對稱,在(,2]上,函數(shù)單調(diào)遞減.由題意,得,,可得a–4≤0<e<,解得ea≤4故選:B【點睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了二次函數(shù)的性質(zhì),屬于中檔題.本題的難點是這一條件的轉(zhuǎn)化.8、C【解析】過點A,B分別作準線的垂線,交準線于點E,D,設(shè)|BF|=a,利用拋物線的定義和平行線的性質(zhì)、直角三角形求解【詳解】如圖,過點A,B分別作準線的垂線,交準線于點E,D,設(shè)|BF|=a,則由已知得|BC|=2a,由拋物線定義得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因為|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,從而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此拋物線的方程為y2=3x,故選:C.9、A【解析】由題可得,則,可判斷,,即可得出結(jié)果.【詳解】前n項和有最大值,,,,,,,使得的最大值n為15.故選:A.【點睛】本題考查等差數(shù)列前n項和的有關(guān)判斷,解題的關(guān)鍵是得出.10、C【解析】先根據(jù)直線平行的充要條件求出a,然后可得.【詳解】若,則,,顯然平行;若直線,則且,即.故“”是直線與直線平行的充要條件.故選:C11、D【解析】求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)數(shù)的符號求出函數(shù)的單調(diào)區(qū)間,再根據(jù)函數(shù)的單調(diào)性即可得出答案.【詳解】解:因為,所以,當時,,單調(diào)遞減;當時,,單調(diào)遞增,故.故選:D.12、A【解析】由橢圓的定義得,進而根據(jù)中位線定理得.【詳解】解:由橢圓方程得,即,因為由橢圓的定義得,,所以,因為是的中點,是的中點,所以.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先利用橢圓的對稱性和為平行四邊形,可以得出、兩點是關(guān)于軸對稱,進而得到;設(shè),,,從而求出,然后由,利用,求得,最后根據(jù)得出離心率【詳解】解:是與軸重合的,且四邊形為平行四邊形,所以、兩點的縱坐標相等,、的橫坐標互為相反數(shù),、兩點是關(guān)于軸對稱的由題知:四邊形為平行四邊形,所以可設(shè),,代入橢圓方程解得:設(shè)為橢圓的右頂點,,四邊形為平行四邊形對點:解得:根據(jù):得:故答案為:14、##【解析】畫出符合要求的圖形,觀察得到軌跡是菱形,并進行充分性和必要性兩方面的證明,并求解出軌跡圖形的面積.【詳解】如圖,分別是正方形ABCD,,的中心,下面進行證明:菱形EFGC的周界即為動線段PQ的中點H的軌跡,首先證明:如果點H是動線段PQ的中點,那么點H必在菱形EFGC的周界上,分兩種情況證明:(1)P,Q分別在某一個定角的兩邊上,不失一般性,設(shè)P從B到C,而Q同時從到C,由于速度相同,所以PQ必平行于,故PQ的中點H必在上;(2)P,Q分別在兩條異面直線上,不失一般性,設(shè)P從A到B,同時Q從到,由于速度相同,則,由于H為PQ的中點,連接并延長,交底面ABCD于點T,連接PT,則平面與平面交線是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,從而T在AC上,可以證明FH∥AC,GH∥AC,DG∥AC,基于平行線的唯一性,顯然H在DG上,綜合(1)(2)可證明,線段PQ的中點一定在菱形EFGC的周界上;下面證明:如果點H在菱形EFGC的周界上,則點H必定是符合條件的線段的中點.也分兩種情況進行證明:(1)H在CG或CE上,過點H作PQ∥(或BD),而與BC及(或CD及BC)分別相交于P和Q,由相似的性質(zhì)可得:PH=QH,即H是PQ的中點,同時可證:BP=(或BQ=DP),因此P、Q符合題設(shè)條件(2)H在EF或FG上,不失一般性,設(shè)H在FG上,連接并延長,交平面AC于點T,顯然T在AC上,過T作TP∥CB于點P,則TP∥,在平面上,連接PH并延長,交于點Q,在三角形中,G是的中點,∥AC,則H是的中點,于是,從而有,又因為TP∥CB,,所以,從而,因此P,Q符合題設(shè)條件.由(1)(2),如果H是菱形EFGC周界上的任一點,則H必是符合題設(shè)條件的動線段PQ的中點,證畢.因為四邊形為菱形,其中,所以邊長為且,為等邊三角形,,所以面積.故答案為:【點睛】對于立體幾何軌跡問題,要畫出圖形,并要善于觀察,利用所學(xué)的立體幾何方面的知識,大膽猜測,小心驗證,對于多種情況的,要畫出相應(yīng)的圖形,注意分類討論.15、0【解析】通過導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可得極值點的情況.【詳解】因為,,所以在上恒成立,所以在上單調(diào)遞增,所以函數(shù)的極值點的個數(shù)是0,故答案為:0.16、【解析】運用導(dǎo)數(shù)的幾何意義進行求解即可.【詳解】由,所以,而,所以切線方程為:,令,得,令,得,所以三角形的面積為:,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)將橢圓化為標準方程,求得,進而求得離心率;(2)設(shè)直線,,,與橢圓聯(lián)立,借助韋達定理及弦長公式求得,從而求得直線方程.【小問1詳解】由題知,橢圓C:,則,離心率【小問2詳解】設(shè)直線,,聯(lián)立,化簡得,則,解得,,由弦長公式知,,解得,故直線或18、(1)(或(2)或【解析】(1)由條件可得,由此可求直線的斜率,由點斜式求直線的方程;(2)由條件可求到直線的距離,利用待定系數(shù)法求直線的方程.【小問1詳解】圓,得圓心,半徑,直線的斜率:,設(shè)直線的斜率為,有,解得.所求直線的方程為:.(或【小問2詳解】直線m被圓C截得的弦EF為直徑的圓經(jīng)過圓心C,∴圓心C到直線的距離為.設(shè)直線方?為,則解得或直線的方程為:或19、(1)證明見解析(2)【解析】(1)由可證得平面,根據(jù)線面平行的性質(zhì)可證得結(jié)論;(2)以為坐標原點建立空間直角坐標系,設(shè),利用線面角的向量求法可表示出,分別在、和三種情況下,結(jié)合基本不等式求得所求最大值.【小問1詳解】四邊形為正方形,,又平面,平面,平面,又平面,平面平面,.【小問2詳解】以為坐標原點,為軸可建立如圖所示空間直角坐標系,則,,,,由(1)知:,則可設(shè),,,,設(shè)平面的法向量,則,令,則,,,設(shè)直線與平面所成角為,;當時,;當時,(當且僅當,即時取等號);當時,;綜上所述:直線與平面所成角正弦值的最大值為.20、(1)證明見解析;(2).【解析】(1)連接BD交AC于點O,設(shè)FC的中點為P,連接OP,EP,證明BD//EP,BD⊥平面FAC即可推理作答.(2)求出三棱錐和四棱錐的體積即可計算作答.【小問1詳解】連接BD交AC于點O,設(shè)FC的中點為P,連接OP,EP,如圖,菱形ABCD中,O為AC的中點,則OP//FA,且,而ED//FA,且FA=2ED,于是得OP//ED,且OP=ED,即有四邊形OPED為平行四邊形,則OD//EP,即BD//EP,因為FA⊥平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論