浙江省杭州市西湖區(qū)市級(jí)名校2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
浙江省杭州市西湖區(qū)市級(jí)名校2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
浙江省杭州市西湖區(qū)市級(jí)名校2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
浙江省杭州市西湖區(qū)市級(jí)名校2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
浙江省杭州市西湖區(qū)市級(jí)名校2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省杭州市西湖區(qū)市級(jí)名校2023-2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°2.如圖,正方形ABCD的頂點(diǎn)C在正方形AEFG的邊AE上,AB=2,AE=,則點(diǎn)G到BE的距離是()A. B. C. D.3.已知a+b=4,c﹣d=﹣3,則(b+c)﹣(d﹣a)的值為()A.7 B.﹣7 C.1 D.﹣14.一次函數(shù)滿足,且y隨x的增大而減小,則此函數(shù)的圖像一定不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.某大學(xué)生利用課余時(shí)間在網(wǎng)上銷售一種成本為50元/件的商品,每月的銷售量y(件)與銷售單價(jià)x(元/件)之間的函數(shù)關(guān)系式為y=–4x+440,要獲得最大利潤,該商品的售價(jià)應(yīng)定為A.60元B.70元C.80元D.90元6.如圖,為測(cè)量一棵與地面垂直的樹OA的高度,在距離樹的底端30米的B處,測(cè)得樹頂A的仰角∠ABO為α,則樹OA的高度為()A.米 B.30sinα米 C.30tanα米 D.30cosα米7.的倒數(shù)是()A.﹣ B.2 C.﹣2 D.8.三角形兩邊的長是3和4,第三邊的長是方程x2-12x+35=0的根,則該三角形的周長為()A.14 B.12 C.12或14 D.以上都不對(duì)9.下列算式中,結(jié)果等于a5的是()A.a(chǎn)2+a3 B.a(chǎn)2?a3 C.a(chǎn)5÷a D.(a2)310.如果-a=-aA.a(chǎn)>0 B.a(chǎn)≥0 C.a(chǎn)≤0 D.a(chǎn)<0二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AC與BD相交于點(diǎn)E,AC=BC,DE=3,AD=5,則⊙O的半徑為___________.12.《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,在“勾股”章中有這樣一個(gè)問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?”用今天的話說,大意是:如圖,是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門位于的中點(diǎn),南門位于的中點(diǎn),出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點(diǎn)在直線上)?請(qǐng)你計(jì)算的長為__________步.13.已知雙曲線經(jīng)過點(diǎn)(-1,2),那么k的值等于_______.14.如圖,在一次數(shù)學(xué)活動(dòng)課上,小明用18個(gè)棱長為1的正方體積木搭成一個(gè)幾何體,然后他請(qǐng)小亮用其他棱長為1的正方體積木在旁邊再搭一個(gè)幾何體,使小亮所搭幾何體恰好和小明所搭幾何體拼成一個(gè)無空隙的大長方體(不改變小明所搭幾何體的形狀).請(qǐng)從下面的A、B兩題中任選一題作答,我選擇__________.A、按照小明的要求搭幾何體,小亮至少需要__________個(gè)正方體積木.B、按照小明的要求,小亮所搭幾何體的表面積最小為__________.15.如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(﹣3,4),頂點(diǎn)C在x軸的負(fù)半軸上,函數(shù)y=(x<0)的圖象經(jīng)過頂點(diǎn)B,則k的值為_____.16.已知扇形的弧長為2π,圓心角為60°,則它的半徑為________.三、解答題(共8題,共72分)17.(8分)某中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊的長為x米.若平行于墻的一邊長為y米,直接寫出y與x的函數(shù)關(guān)系式及其自變量x的取值范圍.垂直于墻的一邊的長為多少米時(shí),這個(gè)苗圃園的面積最大,并求出這個(gè)最大值.18.(8分)解方程(1)x1﹣1x﹣1=0(1)(x+1)1=4(x﹣1)1.19.(8分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點(diǎn)D、E,得到DE?。笞C:AB為⊙C的切線.求圖中陰影部分的面積.20.(8分)已知關(guān)于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實(shí)數(shù)m取何值,方程總有兩個(gè)實(shí)數(shù)根;(2)若方程兩個(gè)根均為正整數(shù),求負(fù)整數(shù)m的值.21.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作⊙O的切線DE交AC于點(diǎn)E,交AB延長線于點(diǎn)F.(1)求證:BD=CD;(2)求證:DC2=CE?AC;(3)當(dāng)AC=5,BC=6時(shí),求DF的長.22.(10分)問題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,連接AD、BE,求的值;(2)如圖2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,過點(diǎn)A作AM⊥AB,點(diǎn)P是射線AM上一動(dòng)點(diǎn),連接CP,做CQ⊥CP交線段AB于點(diǎn)Q,連接PQ,求PQ的最小值;(3)李師傅準(zhǔn)備加工一個(gè)四邊形零件,如圖3,這個(gè)零件的示意圖為四邊形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,請(qǐng)你幫李師傅求出這個(gè)零件的對(duì)角線BD的最大值.圖323.(12分)如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.①求拋物線的函數(shù)關(guān)系式;②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).24.如圖,在等邊三角形ABC中,點(diǎn)D,E分別在BC,AB上,且∠ADE=60°.求證:△ADC~△DEB.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.2、A【解析】

根據(jù)平行線的判定,可得AB與GE的關(guān)系,根據(jù)平行線間的距離相等,可得△BEG與△AEG的關(guān)系,根據(jù)根據(jù)勾股定理,可得AH與BE的關(guān)系,再根據(jù)勾股定理,可得BE的長,根據(jù)三角形的面積公式,可得G到BE的距離.【詳解】連接GB、GE,由已知可知∠BAE=45°.又∵GE為正方形AEFG的對(duì)角線,∴∠AEG=45°.∴AB∥GE.∵AE=4,AB與GE間的距離相等,∴GE=8,S△BEG=S△AEG=SAEFG=1.過點(diǎn)B作BH⊥AE于點(diǎn)H,∵AB=2,∴BH=AH=.∴HE=3.∴BE=2.設(shè)點(diǎn)G到BE的距離為h.∴S△BEG=?BE?h=×2×h=1.∴h=.即點(diǎn)G到BE的距離為.故選A.【點(diǎn)睛】本題主要考查了幾何變換綜合題.涉及正方形的性質(zhì),全等三角形的判定及性質(zhì),等積式及四點(diǎn)共圓周的知識(shí),綜合性強(qiáng).解題的關(guān)鍵是運(yùn)用等積式及四點(diǎn)共圓的判定及性質(zhì)求解.3、C【解析】試題分析:原式去括號(hào)可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故選A.考點(diǎn):代數(shù)式的求值;整體思想.4、C【解析】

y隨x的增大而減小,可得一次函數(shù)y=kx+b單調(diào)遞減,k<0,又滿足kb<0,可得b>0,由此即可得出答案.【詳解】∵y隨x的增大而減小,∴一次函數(shù)y=kx+b單調(diào)遞減,∴k<0,∵kb<0,∴b>0,∴直線經(jīng)過第二、一、四象限,不經(jīng)過第三象限,故選C.【點(diǎn)睛】本題考查了一次函數(shù)的圖象和性質(zhì),熟練掌握一次函數(shù)y=kx+b(k≠0,k、b是常數(shù))的圖象和性質(zhì)是解題的關(guān)鍵.5、C【解析】設(shè)銷售該商品每月所獲總利潤為w,則w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴當(dāng)x=80時(shí),w取得最大值,最大值為3600,即售價(jià)為80元/件時(shí),銷售該商品所獲利潤最大,故選C.6、C【解析】試題解析:在Rt△ABO中,∵BO=30米,∠ABO為α,∴AO=BOtanα=30tanα(米).故選C.考點(diǎn):解直角三角形的應(yīng)用-仰角俯角問題.7、B【解析】

根據(jù)乘積是1的兩個(gè)數(shù)叫做互為倒數(shù)解答.【詳解】解:∵×1=1∴的倒數(shù)是1.故選B.【點(diǎn)睛】本題考查了倒數(shù)的定義,是基礎(chǔ)題,熟記概念是解題的關(guān)鍵.8、B【解析】

解方程得:x=5或x=1.當(dāng)x=1時(shí),3+4=1,不能組成三角形;當(dāng)x=5時(shí),3+4>5,三邊能夠組成三角形.∴該三角形的周長為3+4+5=12,故選B.9、B【解析】試題解析:A、a2與a3不能合并,所以A選項(xiàng)錯(cuò)誤;B、原式=a5,所以B選項(xiàng)正確;C、原式=a4,所以C選項(xiàng)錯(cuò)誤;D、原式=a6,所以D選項(xiàng)錯(cuò)誤.故選B.10、C【解析】

根據(jù)絕對(duì)值的性質(zhì):一個(gè)正數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),1的絕對(duì)值是1.若|-a|=-a,則可求得a的取值范圍.注意1的相反數(shù)是1.【詳解】因?yàn)閨-a|≥1,所以-a≥1,那么a的取值范圍是a≤1.故選C.【點(diǎn)睛】絕對(duì)值規(guī)律總結(jié):一個(gè)正數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),1的絕對(duì)值是1.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

如圖,作輔助線CF;證明CF⊥AB(垂徑定理的推論);證明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的長,即可解決問題.【詳解】如圖,連接CO并延長,交AB于點(diǎn)F;∵AC=BC,∴CF⊥AB(垂徑定理的推論);∵BD是⊙O的直徑,∴AD⊥AB;設(shè)⊙O的半徑為r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=,故答案為.【點(diǎn)睛】該題主要考查了相似三角形的判定及其性質(zhì)、垂徑定理的推論等幾何知識(shí)點(diǎn)的應(yīng)用問題;解題的關(guān)鍵是作輔助線,構(gòu)造相似三角形,靈活運(yùn)用有關(guān)定來分析、判斷.12、【解析】分析:由正方形的性質(zhì)得到∠EDG=90°,從而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性質(zhì)得到CK:KD=HD:HA,求解即可得到結(jié)論.詳解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案為:.點(diǎn)睛:本題考查了相似三角形的應(yīng)用.解題的關(guān)鍵是證明△CKD∽△DHA.13、-1【解析】

分析:根據(jù)點(diǎn)在曲線上點(diǎn)的坐標(biāo)滿足方程的關(guān)系,將點(diǎn)(-1,2)代入,得:,解得:k=-1.14、A,18,1【解析】

A、首先確定小明所搭幾何體所需的正方體的個(gè)數(shù),然后確定兩人共搭建幾何體所需小立方體的數(shù)量,求差即可;

B、分別得到前后面,上下面,左右面的面積,相加即可求解.【詳解】A、∵小亮所搭幾何體恰好可以和小明所搭幾何體拼成一個(gè)無縫隙的大長方體,

∴該長方體需要小立方體4×32=36個(gè),

∵小明用18個(gè)邊長為1的小正方體搭成了一個(gè)幾何體,

∴小亮至少還需36-18=18個(gè)小立方體,

B、表面積為:2×(8+8+7)=1.

故答案是:A,18,1.【點(diǎn)睛】考查了由三視圖判斷幾何體的知識(shí),能夠確定兩人所搭幾何體的形狀是解答本題的關(guān)鍵.15、﹣1【解析】

根據(jù)點(diǎn)C的坐標(biāo)以及菱形的性質(zhì)求出點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法求出k的值即可.【詳解】解:∵A(﹣3,4),∴OC==5,∴CB=OC=5,則點(diǎn)B的橫坐標(biāo)為﹣3﹣5=﹣8,故B的坐標(biāo)為:(﹣8,4),將點(diǎn)B的坐標(biāo)代入y=得,4=,解得:k=﹣1.故答案為:﹣1.16、6.【解析】分析:設(shè)扇形的半徑為r,根據(jù)扇形的面積公式及扇形的面積列出方程,求解即可.詳解:設(shè)扇形的半徑為r,根據(jù)題意得:60πr解得:r=6故答案為6.點(diǎn)睛:此題考查弧長公式,關(guān)鍵是根據(jù)弧長公式解答.三、解答題(共8題,共72分)17、112.1【解析】試題分析:(1)根據(jù)題意即可求得y與x的函數(shù)關(guān)系式為y=30﹣2x與自變量x的取值范圍為6≤x<11;(2)設(shè)矩形苗圃園的面積為S,由S=xy,即可求得S與x的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的最值問題,即可求得這個(gè)苗圃園的面積最大值.試題解析:解:(1)y=30﹣2x(6≤x<11).(2)設(shè)矩形苗圃園的面積為S,則S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴當(dāng)x=7.1時(shí),S最大值=112.1,即當(dāng)矩形苗圃園垂直于墻的一邊的長為7.1米時(shí),這個(gè)苗圃園的面積最大,這個(gè)最大值為112.1.點(diǎn)睛:此題考查了二次函數(shù)的實(shí)際應(yīng)用問題.解題的關(guān)鍵是根據(jù)題意構(gòu)建二次函數(shù)模型,然后根據(jù)二次函數(shù)的性質(zhì)求解即可.18、(1)x1=1+,x1=1﹣;(1)x1=3,x1=.【解析】

(1)配方法解;(1)因式分解法解.【詳解】(1)x1﹣1x﹣1=2,x1﹣1x+1=1+1,(x﹣1)1=3,x﹣1=,x=1,x1=1,x1=1﹣,(1)(x+1)1=4(x﹣1)1.(x+1)1﹣4(x﹣1)1=2.(x+1)1﹣[1(x﹣1)]1=2.(x+1)1﹣(1x﹣1)1=2.(x+1﹣1x+1)(x+1+1x﹣1)=2.(﹣x+3)(3x﹣1)=2.x1=3,x1=.【點(diǎn)睛】考查了解一元二次方程的應(yīng)用,解此題的關(guān)鍵是能把一元二次方程轉(zhuǎn)化成一元一次方程.19、(1)證明見解析;(2)1-π.【解析】

(1)解直角三角形求出BC,根據(jù)勾股定理求出AB,根據(jù)三角形面積公式求出CF,根據(jù)切線的判定得出即可;(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案.【詳解】(1)過C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面積S,∴CF2,∴CF為⊙C的半徑.∵CF⊥AB,∴AB為⊙C的切線;(2)圖中陰影部分的面積=S△ACB﹣S扇形DCE1﹣π.【點(diǎn)睛】本題考查了勾股定理,扇形的面積,解直角三角形,切線的性質(zhì)和判定等知識(shí)點(diǎn),能求出CF的長是解答此題的關(guān)鍵.20、(1)見解析;(2)m=-1.【解析】

(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=1>1,由此即可證出:無論實(shí)數(shù)m取什么值,方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根據(jù)已知條件即可得出結(jié)論.【詳解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴無論m取何值,(m+1)2恒大于等于1∴原方程總有兩個(gè)實(shí)數(shù)根(2)原方程可化為:(x-1)(x-m-2)=1∴x1=1,x2=m+2∵方程兩個(gè)根均為正整數(shù),且m為負(fù)整數(shù)∴m=-1.【點(diǎn)睛】本題考查了一元二次方程與根的判別式,解題的關(guān)鍵是熟練的掌握根的判別式與根據(jù)因式分解法解一元二次方程.21、(1)詳見解析;(2)詳見解析;(3)DF=.【解析】

(1)先判斷出AD⊥BC,即可得出結(jié)論;(2)先判斷出OD∥AC,進(jìn)而判斷出∠CED=∠ODE,判斷出△CDE∽△CAD,即可得出結(jié)論;(3)先求出OD,再求出CD=3,進(jìn)而求出CE,AE,DE,再判斷出,即可得出結(jié)論.【詳解】(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)連接OD,∵DE是⊙O的切線,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴,∴CD2=CE?AC;(3)∵AB=AC=5,由(1)知,∠ADB=90°,OA=OB,∴OD=AB=,由(1)知,CD=BC=3,由(2)知,CD2=CE?AC,∵AC=5,∴CE=,∴AE=AC-CE=5-=,在Rt△CDE中,根據(jù)勾股定理得,DE=,由(2)知,OD∥AC,∴,∴,∴DF=.【點(diǎn)睛】此題是圓的綜合題,主要考查了圓的性質(zhì),等腰三角形的性質(zhì),相似三角形的判斷和性質(zhì),勾股定理,判斷出△CDE∽△CAD是解本題的關(guān)鍵.22、(1);(2);(3)+.【解析】

(1)由等腰直角三角形的性質(zhì)可得BC=3,CE=,∠ACB=∠DCE=45°,可證△ACD∽△BCE,可得=;(2)由題意可證點(diǎn)A,點(diǎn)Q,點(diǎn)C,點(diǎn)P四點(diǎn)共圓,可得∠QAC=∠QPC,可證△ABC∽△PQC,可得,可得當(dāng)QC⊥AB時(shí),PQ的值最小,即可求PQ的最小值;(3)作∠DCE=∠ACB,交射線DA于點(diǎn)E,取CE中點(diǎn)F,連接AC,BE,DF,BF,由題意可證△ABC∽△DEC,可得,且∠BCE=∠ACD,可證△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的長,由三角形三邊關(guān)系可求BD的最大值.【詳解】(1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,∴BC=3,CE=,∠ACB=∠DCE=45°,∴∠BCE=∠ACD,∵==,=,∴=,∠BCE=∠ACD,∴△ACD∽△BCE,∴=;(2)∵∠ACB=90°,∠B=30°,BC=4,∴AC=,AB=2AC=,∵∠QAP=∠QCP=90°,∴點(diǎn)A,點(diǎn)Q,點(diǎn)C,點(diǎn)P四點(diǎn)共圓,∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,∴△ABC∽△PQC,∴,∴PQ=×QC=QC,∴當(dāng)QC的長度最小時(shí),PQ的長度最小,即當(dāng)QC⊥AB時(shí),PQ的值最小,此時(shí)QC=2,PQ的最小值為;(3)如圖,作∠DCE=∠ACB,交射線DA于點(diǎn)E,取CE中點(diǎn)F,連接AC,BE,DF,BF,,∵∠ADC=90°,AD=CD,∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,∴△ABC∽△DEC,∴,∵∠DCE=∠ACB,∴∠BCE=∠ACD,∴△BCE∽△ACD,∴∠BEC=∠ADC=90°,∴CE=BC=2,∵點(diǎn)F是EC中點(diǎn),∴DF=EF=CE=,∴BF==,∴BD≤DF+BF=+【點(diǎn)睛】本題是相似綜合題,考查了等腰直角三角形的性質(zhì),勾股定理,相似三角形的判定和性質(zhì)等知識(shí),添加恰當(dāng)輔助線構(gòu)造相似三角形是本題的關(guān)鍵.23、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點(diǎn)Q的坐標(biāo)為(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)將二次函數(shù)的解析式進(jìn)行配方即可得到頂點(diǎn)D的坐標(biāo).(2)①以AD為直徑的圓經(jīng)過點(diǎn)C,即點(diǎn)C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個(gè)直角三角形,且∠ACD=90°,A點(diǎn)坐標(biāo)可得,而C、D的坐標(biāo)可由a表達(dá)出來,在得出AC、CD、AD的長度表達(dá)式后,依據(jù)勾股定理列等式即可求出a的值.②將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標(biāo)關(guān)鍵是求出點(diǎn)M的坐標(biāo);首先根據(jù)①的函數(shù)解析式設(shè)出M點(diǎn)的坐標(biāo),然后根據(jù)題干條件:BF=2MF作為等量關(guān)系進(jìn)行解答即可.③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,由C、D兩點(diǎn)的坐標(biāo)不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論