淮南市重點中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第1頁
淮南市重點中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第2頁
淮南市重點中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第3頁
淮南市重點中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第4頁
淮南市重點中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

淮南市重點中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是()A. B.C. D.2.經(jīng)過點且與直線垂直的直線方程為()A. B.C. D.3.已知橢圓:的左、右焦點分別為,,下頂點為,直線與橢圓的另一個交點為,若為等腰三角形,則橢圓的離心率為()A. B.C. D.4.若兩條直線與互相垂直,則的值為()A.4 B.-4C.1 D.-15.若直線:與:互相平行,則a的值是()A. B.2C.或2 D.3或6.“冰雹猜想”數(shù)列滿足:,,若,則()A.4 B.3C.2 D.17.設(shè),則有()A. B.C. D.8.函數(shù)的導(dǎo)函數(shù)為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C. D.9.在正三棱錐中,,且,M,N分別為BC,AD的中點,則直線AM和CN夾角的余弦值為()A. B.C. D.10.在中,角、、的對邊分別是、、,若.則的大小為()A. B.C. D.11.若數(shù)列滿足,則()A. B.C. D.12.設(shè)雙曲線的實軸長與焦距分別為2,4,則雙曲線C的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知橢圓C1和雙曲線C2交于P1、P2、P3、P4四個點,F(xiàn)1和F2分別是C1的左右焦點,也是C2的左右焦點,并且六邊形是正六邊形.若橢圓C1的方程為,則雙曲線方程為______.14.在中,,,的外接圓半徑為,則邊c的長為_____.15.若球的大圓的面積為,則該球的表面積為___________.16.已知數(shù)列的前項和.則數(shù)列的通項公式為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓F:經(jīng)過點且離心率為,直線和是分別過橢圓F的左、右焦點的兩條動直線,它們與橢圓分別相交于點A、B和C、D,O為坐標(biāo)原點,直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F的標(biāo)準(zhǔn)方程(2)是否存在定點P,Q,使得為定值.若存在,請求出P、Q的坐標(biāo),若不存在,請說明理由18.(12分)有1000人參加了某次垃圾分類知識競賽,從中隨機抽取100人,將這100人的此次競賽的分?jǐn)?shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100],并整理得到如下頻率分布直方圖.(1)求圖中a的值;(2)估計總體1000人中競賽分?jǐn)?shù)不少于70分的人數(shù);(3)假設(shè)同組中的每個數(shù)據(jù)都用該組區(qū)間的中點值代替,估計總體1000人的競賽分?jǐn)?shù)的平均數(shù).19.(12分)已知拋物線C:x2=4y的焦點為F,過F的直線與拋物線C交于A,B兩點,點M在拋物線C的準(zhǔn)線上,MF⊥AB,S△AFM=λS△BFM(1)當(dāng)λ=3時,求|AB|的值;(2)當(dāng)λ∈[]時,求|+|的最大值20.(12分)(1)求函數(shù)的單調(diào)區(qū)間.(2)用向量方法證明:已知直線l,a和平面,,,,求證:.21.(12分)在中,角、、所對的邊分別為、、,且(1)求證;、、成等差數(shù)列;(2)若,的面積為,求的周長22.(10分)某保險公司根據(jù)官方公布的歷年營業(yè)收入,制成表格如下:表1年份2011201220132014201520162017201820192020年份序號x12345678910營業(yè)收入y(億元)0.529.3633.6132352571912120716822135由表1,得到下面的散點圖:根據(jù)已有的函數(shù)知識,某同學(xué)選用二次函數(shù)模型(b和a是待定參數(shù))來擬合y和x的關(guān)系.這時,可以對年份序號做變換,即令,得,由表1可得變換后的數(shù)據(jù)見表2.表2T149162536496481100Y0.529.3633.6132352571912120716822135(1)根據(jù)表中數(shù)據(jù),建立y關(guān)于t的回歸方程(系數(shù)精確到個位數(shù));(2)根據(jù)(1)中得到的回歸方程估計2021年的營業(yè)收入,以及營業(yè)收入首次超過4000億元的年份.附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,.參考數(shù)據(jù):.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意,在上恒成立,只需滿足即可求解.【詳解】解:因為,所以,因為函數(shù)在上單調(diào)遞減,所以在上恒成立,只需滿足,即,解得故選:A.2、A【解析】根據(jù)點斜式求得正確答案.【詳解】直線的斜率為,經(jīng)過點且與直線垂直的直線方程為,即.故選:A3、B【解析】由橢圓定義可得各邊長,利用三角形相似,可得點坐標(biāo),再根據(jù)點在橢圓上,可得離心率.【詳解】如圖所示:因為為等腰三角形,且,又,所以,所以,過點作軸,垂足為,則,由,,得,因為點在橢圓上,所以,所以,即離心率,故選:B.4、A【解析】根據(jù)兩直線垂直的充要條件知:,即可求的值.【詳解】由兩直線垂直,可知:,即.故選:A5、A【解析】根據(jù)直線:與:互相平行,由求解.【詳解】因為直線:與:互相平行,所以,即,解得或,當(dāng)時,直線:,:,互相平行;當(dāng)時,直線:,:,重合;所以,故選:A6、A【解析】根據(jù)題意分別假設(shè)為奇數(shù)、偶數(shù)的情況,求出對應(yīng)的即可.【詳解】由題意知,因為,若為奇數(shù)時,,與為奇數(shù)矛盾,不符合題意;若為偶數(shù)時,,可得,符合題意.不符合故選:A7、A【解析】利用作差法計算與比較大小即可求解.【詳解】因為,,所以,所以,故選:A.8、C【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性即可得解.【詳解】對任意,都有成立,即令,則,所以函數(shù)上單調(diào)遞增不等式即,即因為,所以所以,,解得,所以不等式的解集為故選:C.9、B【解析】由題意可得兩兩垂直,所以以為原點,所在的直線分別為軸,建立空間直角坐標(biāo)系,利用空間向量求解【詳解】因為,所以兩兩垂直,所以以為原點,所在的直線分別為軸,建立空間直角坐標(biāo)系,如圖所示,因為,所以,因為M,N分別為BC,AD的中點,所以,所以,設(shè)直線AM和CN所成的角為,則,所以直線AM和CN夾角的余弦值為,故選:B10、B【解析】利用余弦定理結(jié)合角的范圍可求得角的值,再利用三角形的內(nèi)角和定理可求得的值.【詳解】因為,則,則,由余弦定理可得,因為,則,故.故選:B.11、C【解析】利用前項積與通項的關(guān)系可求得結(jié)果.【詳解】由已知可得.故選:C.12、C【解析】由已知可求出,即可得出漸近線方程.【詳解】因為,所以,所以的漸近線方程為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先根據(jù)橢圓的方程求得焦點坐標(biāo),然后根據(jù)為正六邊形求得點的坐標(biāo),即點在雙曲線上,然后解出方程即可【詳解】設(shè)雙曲線的方程為:根據(jù)橢圓的方程可得:又為正六邊形,則點的坐標(biāo)為:則點在雙曲線上,可得:又解得:故答案為:14、【解析】由面積公式求得,結(jié)合外接圓半徑,利用正弦定理得到邊c的長.【詳解】,從而,由正弦定理得:,解得:故答案為:15、【解析】設(shè)球的半徑為,則球的大圓的半徑為,根據(jù)圓的面積公式列方程求出,再由球的表面積公式即可求解.【詳解】設(shè)球的半徑為,則球的大圓的半徑為,所以球的大圓的面積為,可得,所以該球的表面積為.故答案為:.16、【解析】根據(jù)公式求解即可.【詳解】解:當(dāng)時,當(dāng)時,因為也適合此等式,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在點,使得為定值.【解析】(1)設(shè),,,結(jié)合條件即求;(2)由題可設(shè)直線方程,利用韋達(dá)定理法可得,再結(jié)合條件可得點的軌跡方程為,然后利用橢圓的定義即得結(jié)論.【小問1詳解】設(shè),,,橢圓方程為:,橢圓過點,,解得t=1,所以橢圓F的方程是【小問2詳解】由題可得焦點的坐標(biāo)分別為,當(dāng)直線AB或CD的斜率不存在時,點M的坐標(biāo)為或,當(dāng)直線AB和CD的斜率都存在時,設(shè)斜率分別為,點,直線AB為,聯(lián)立,得則,,同理可得,,因為,所以,化簡得由題意,知,所以設(shè)點,則,所以,化簡得,當(dāng)直線或的斜率不存在時,點M的坐標(biāo)為或,也滿足此方程所以點在橢圓上,根據(jù)橢圓定義可知,存在定點,使得為定值【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是利用韋達(dá)定理法及題設(shè)條件求出點M的軌跡方程,再結(jié)合橢圓的定義,從而問題得到解決.18、(1)0.040;(2)750;(3)76.5.【解析】(1)由頻率分布直方圖的性質(zhì)列出方程,能求出圖中的值;(2)先求出競賽分?jǐn)?shù)不少于70分的頻率,由此能估計總體1000人中競賽分?jǐn)?shù)不少于70分的人數(shù);(3)由頻率分布直方圖的性質(zhì)能估計總體1000人的競賽分?jǐn)?shù)的平均數(shù)【詳解】(1)由頻率分布直方圖得:,解得圖中的值為0.040(2)競賽分?jǐn)?shù)不少于70分的頻率為:,估計總體1000人中競賽分?jǐn)?shù)不少于70分的人數(shù)為(3)假設(shè)同組中的每個數(shù)據(jù)都用該組區(qū)間的中點值代替,估計總體1000人的競賽分?jǐn)?shù)的平均數(shù)為:【點睛】本題主要考查頻率、頻數(shù)、平均數(shù)的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識,意在考查學(xué)生對這些知識的理解掌握水平19、(1)(2)【解析】(1)由面積之比可得向量之比,設(shè)直線AB的方程,與拋物線的方程聯(lián)立求出兩根之和及兩根之積,與向量的關(guān)系可得的A,B的橫坐標(biāo)的關(guān)系聯(lián)立求出直線AB的斜率,再由拋物線的性質(zhì)可得焦點弦的值;(2)由(1)的解法類似的求出AB的中點N的坐標(biāo),可得直線AB的斜率與λ的關(guān)系,再由λ的范圍,求出直線AB的斜率的范圍,由題意設(shè)直線MF的方程,令y=﹣1求出M的橫坐標(biāo),進(jìn)而求出|MN|的最大值,而|+|=2||,求出|+|的最大值【小問1詳解】當(dāng)λ=3時,即S△AFM=3S△BFM,由題意可得=3,因為拋物線C:x2=4y的焦點為F(1,0),準(zhǔn)線方程為y=﹣1,設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=kx+1,聯(lián)立,整理可得:x2﹣4kx﹣4=0,顯然,x1+x2=4k①,x1x2=﹣4②,y1+y2=k(x1+x2)+2=4k2+2,由=3,則(﹣x1,1﹣y1)=3(x2,y2﹣1)可得x1=﹣3x2③,①③聯(lián)立可得x2=﹣2k,x1=6k,代入②中可得﹣12k2=﹣4,解得k2=,由拋物線的性質(zhì)可得|AB|=y(tǒng)1+y2+2=4×+2=,所以|AB|的值為;【小問2詳解】由(1)可得AB中點N(2k,2k2+2),由=λ,則x1=﹣λx2④,同(1)的算法:①②④聯(lián)立4k2λ=(1﹣λ)2,因為λ∈[],所以4k2=λ+﹣2,令y=λ+,λ∈[],則函數(shù)y先減后增,所以λ=2或時,y最大且為2+,此時4k2最大,且為,所以k2的最大值為:,直線MF的方程為:y=﹣x+1,令y=﹣1,可得x=2k,即M(2k,﹣1),因為|+|=2||,而|NM|=|2k2+2+1|=2k2+3≤2×+3=,所以|+|的最大值為20、(1)的單調(diào)減區(qū)間為和,單調(diào)增區(qū)間為;(2)證明見解析.【解析】(1)求出導(dǎo)函數(shù),由得增區(qū)間,由得減區(qū)間;(2)說明直線方向向量與平行的法向量垂直后可得【詳解】(1)解:定義域為R,,,解得,.當(dāng)或時,,當(dāng)時,.所以的單調(diào)減區(qū)間為和,單調(diào)增區(qū)間為.(2)證明:在直線a上取非零向量,因為,所以是直線l的方向向量,設(shè)是平面的一個法向量,因為,所以.又,所以.21、(1)證明見解析(2)【解析】(1)利用正弦定理結(jié)合兩角和的正弦公式求出的值,結(jié)合角的取值范圍可求得角的值,可求得的值,即可證得結(jié)論成立;(2)利用三角形的面積公式可求得的值,結(jié)合余弦定理可求得的值,進(jìn)而可求得的周長.【小問1詳解】證明:由正弦定理及,得,所以,,所以,,,則,所以,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論