版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆江蘇省海安中學高二數(shù)學第一學期期末預測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中心在原點的雙曲線C的右焦點為,實軸長為2,則雙曲線C的方程為()A. B.C. D.2.已知F是雙曲線的右焦點,過F且垂直于x軸的直線交E于A,B兩點,若E的漸近線上恰好存在四個點,,,,使得,則E的離心率的取值范圍是()A. B.C. D.3.有6本不同的書,按下列方式進行分配,其中分配種數(shù)正確的是()A.分給甲、乙、丙三人,每人各2本,有15種分法;B.分給甲、乙、丙三人中,一人4本,另兩人各1本,有180種分法;C.分給甲乙每人各2本,分給丙丁每人各1本,共有90種分法;D.分給甲乙丙丁四人,有兩人各2本,另兩人各1本,有1080種分法;4.設是函數(shù)的導函數(shù),的圖象如圖所示,則的圖象最有可能的是()A. B.C. D.5.設正實數(shù),滿足(其中為正常數(shù)),若的最大值為3,則()A.3 B.C. D.6.過拋物線C:的準線上任意一點作拋物線的切線,切點為,若在軸上存在定點,使得恒成立,則點的坐標為()A. B.C. D.7.已知兩條異面直線的方向向量分別是,,則這兩條異面直線所成的角滿足()A. B.C. D.8.《九章算術》是我國古代的數(shù)學名著,書中有如下問題:“今有五人分五錢,令上兩人與下三人等,問各得幾何?”其意思為:“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得之和與丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此為等差數(shù)列,問五人各得多少錢?”(“錢”是古代一種重量單位),這個問題中戊所得為()A.錢 B.錢C.錢 D.錢9.已知橢圓及以下3個函數(shù):①;②;③,其中函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有()A.0個 B.1個C.2個 D.3個10.已知,,,其中,,,則()A. B.C. D.11.若在1和16中間插入3個數(shù),使這5個數(shù)成等比數(shù)列,則公比為()A. B.2C. D.412.已知點為雙曲線的左頂點,點和點在雙曲線的右分支上,是等邊三角形,則的面積是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設直線,直線,若,則_______.14.直線與圓相交于兩點M,N,若滿足,則________15.在空間直角坐標系中,向量為平面ABC的一個法向量,其中,,則向量的坐標為______16.甲、乙兩隊進行籃球決賽,采取七場四勝制(當一隊贏得四場勝利時,該隊獲勝,決賽結(jié)束).根據(jù)前期比賽成績,甲隊的主客場安排依次為“主主客客主客主”.設甲隊主場取勝的概率為0.6,客場取勝的概率為0.5,且各場比賽結(jié)果相互獨立,則甲隊以4∶1獲勝的概率是____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,證明:存在唯一的零點;(2)若,求實數(shù)的取值范圍.18.(12分)已知數(shù)列滿足,,設.(1)證明數(shù)列為等比數(shù)列,并求通項公式;(2)設,求數(shù)列的前項和.19.(12分)在中,角A、B、C的對邊分別為a、b、c,已知,且.(1)求的面積;(2)若a、b、c成等差數(shù)列,求b的值.20.(12分)如圖所示,已知定點為曲線上一個動點,求線段中點的軌跡方程.21.(12分)已知橢圓的中心在原點,焦點為,,且長軸長為4.(1)求橢圓的方程;(2)直線與橢圓相交于A,兩點,求弦長.22.(10分)已知函數(shù),.(1)當時,求不等式的解集;(2)若在上恒成立,求取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)條件,求出,的值,結(jié)合雙曲線的方程進行求解即可【詳解】解:設雙曲線的方程為由已知得:,,再由,,雙曲線的方程為:故選:D2、D【解析】由題意以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點,則必有,又當圓M經(jīng)過原點時此時以AB為直徑的圓M上與雙曲線E的漸近線有三個不同的交點,不滿足,從而得出答案.【詳解】由題意,由得,雙曲線的漸近線方程為所以,由,可知,,,在以AB為直徑的圓M上,圓的半徑為即以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點當圓M與漸近線相切時,圓心到漸近線的距離,則必有,即,則雙曲線E的離心率,所以又當圓M經(jīng)過原點時,,解得E的離心率為,此時以AB為直徑圓M與雙曲線E的漸近線有三個不同的交點,不滿足條件.所以E的離心率的取值范圍是.故選:D3、D【解析】根據(jù)題意,分別按照選項說法列式計算驗證即可做出判斷.【詳解】選項A,6本不同的書分給甲、乙、丙三人,每人各2本,有種分配方法,故該選項錯誤;選項B,6本不同的書分給甲、乙、丙三人,一人4本,另兩人各1本,先將6本書分成4-1-1的3組,再將三組分給甲乙丙三人,有種分配方法,故該選項錯誤;選項C,6本不同的書分給甲乙每人各2本,有種方法,其余分給丙丁每人各1本,有種方法,所以不同的分配方法有種,故該選項錯誤;選項D,先將6本書分為2-2-1-14組,再將4組分給甲乙丙丁4人,有種方法,故該選項正確.故選:D.4、C【解析】利用導函數(shù)的圖象,判斷導函數(shù)的符號,得到函數(shù)的單調(diào)性以及函數(shù)的極值點,然后判斷選項即可【詳解】解:由題意可知:和時,,函數(shù)是增函數(shù),時,,函數(shù)是減函數(shù);是函數(shù)的極大值點,是函數(shù)的極小值點;所以函數(shù)的圖象只能是故選:C5、D【解析】由于,,為正數(shù),且,所以利用基本不等式可求出結(jié)果【詳解】解:因為正實數(shù),滿足(其中為正常數(shù)),所以,則,所以,所以故選:D.6、D【解析】設切點,點,聯(lián)立直線的方程和拋物線C的準線方程可得,將問題轉(zhuǎn)化為對任意點恒成立,可得,解出,從而求出答案【詳解】設切點,點由題意,拋物線C的準線,且由,得,則直線的方程為,即,聯(lián)立令,得由題意知,對任意點恒成立,也就是對任意點恒成立因為,,則,即對任意實數(shù)恒成立,所以,即,所以,故選:D【點睛】一般表示拋物線的切線方程時可將拋物線方程轉(zhuǎn)化為函數(shù)解析式,可利用導數(shù)的幾何意義求解切線斜率,再代入計算.7、D【解析】利用向量夾角余弦公式直接求解【詳解】解:兩條異面直線的方向向量分別是,,這兩條異面直線所成的角滿足:,,故選:D8、D【解析】根據(jù)題意將實際問題轉(zhuǎn)化為等差數(shù)列的問題即可解決【詳解】解:由題意,可設甲、乙、丙、丁、戊五人分得的錢分別為,,,,則,,,,成等差數(shù)列,設公差為,整理上面兩個算式,得:,解得,故選:9、C【解析】由橢圓的幾何性質(zhì)可得橢圓的圖像關于原點對稱,因為函數(shù),函數(shù)為奇函數(shù),其圖像關于原點對稱,則①②滿足題意,對于函數(shù)在軸右側(cè)時,,只有時,,即函數(shù)在軸右側(cè)的圖像顯然不能等分橢圓在軸右側(cè)的圖像的面積,又函數(shù)為偶函數(shù),其圖像關于軸對稱,則函數(shù)在軸左側(cè)的圖像顯然也不能等分橢圓在軸左側(cè)的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,得解.【詳解】解:因為橢圓的圖像關于原點對稱,對于①,函數(shù)為奇函數(shù),其圖像關于原點對稱,即可知的圖象能等分該橢圓面積;對于②,函數(shù)為奇函數(shù),其圖像關于原點對稱,即可知的圖象能等分該橢圓面積;對于③,對于函數(shù)在軸右側(cè)時,,只有時,,即函數(shù)在軸右側(cè)的圖像(如圖)顯然不能等分橢圓在軸右側(cè)的圖像的面積,又函數(shù)為偶函數(shù),其圖像關于軸對稱,則函數(shù)在軸左側(cè)的圖像顯然也不能等分橢圓在軸左側(cè)的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,即函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有2個,故選C.【點睛】本題考查了橢圓的幾何性質(zhì)、函數(shù)的奇偶性及函數(shù)的對稱性,重點考查了函數(shù)的性質(zhì),屬基礎題.10、C【解析】先令函數(shù),求導判斷函數(shù)的單調(diào)性,并作出函數(shù)的圖像,由函數(shù)的單調(diào)性判斷,再由對稱性可得.【詳解】由,則,同理,,令,則,當;當,∴在上單調(diào)遞減,單調(diào)遞增,所以,即可得,又,,由圖的對稱性可知,.故選:C11、A【解析】根據(jù)等比數(shù)列的通項得:,從而可求出.【詳解】解:成等比數(shù)列,∴根據(jù)等比數(shù)列的通項得:,,故選:A.12、C【解析】設點在軸上方,由是等邊三角形得直線斜率.又直線過點,故方程為.代入雙曲線方程,得點的坐標為.同理可得,點的坐標為.故的面積為,選C.二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】根據(jù)兩直線平行可得,,即可求出【詳解】依題可得,,解得故答案為:14、【解析】由點到直線的距離公式,結(jié)合已知可得圓心到直線的距離,再由圓的弦長公式可得,然后可解.【詳解】因為,所以,所以,圓心到直線的距離因為,所以,所以故答案為:15、【解析】根據(jù)向量為平面ABC的一個法向量,由求解.【詳解】因為,,所以,又因為向量為平面ABC的一個法向量,所以,解得,所以,故答案為:16、18【解析】本題應注意分情況討論,即前五場甲隊獲勝的兩種情況,應用獨立事件的概率的計算公式求解.題目有一定的難度,注重了基礎知識、基本計算能力及分類討論思想的考查【詳解】前四場中有一場客場輸,第五場贏時,甲隊以獲勝的概率是前四場中有一場主場輸,第五場贏時,甲隊以獲勝的概率是綜上所述,甲隊以獲勝的概率是【點睛】由于本題題干較長,所以,易錯點之一就是能否靜心讀題,正確理解題意;易錯點之二是思維的全面性是否具備,要考慮甲隊以獲勝的兩種情況;易錯點之三是是否能夠準確計算三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)當時,求導得到,判斷出函數(shù)的單調(diào)性,求出最值,可證得命題成立;(2)當且時,不滿足題意,故,又定義域為,講不等式化簡,參變分離后構造新函數(shù),求導判斷單調(diào)性并求出最值,可得實數(shù)的取值范圍【詳解】(1)函數(shù)的定義域為,當時,由,當時,,單調(diào)遞減;當時,,單調(diào)遞增;.且,故存在唯一的零點;(2)當時,不滿足恒成立,故由定義域為,可得,令,則,則當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,故當時,函數(shù)取得最大值(1),故實數(shù)的取值范圍是【點睛】方法點睛:本題考查函數(shù)零點的問題,考查導數(shù)的應用,考查不等式的恒成立問題,關于恒成立問題的幾種常見解法總結(jié)如下:
參變分離法,將不等式恒成立問題轉(zhuǎn)化函數(shù)求最值問題;
主元變換法,把已知取值范圍的變量作為主元,把求取值范圍的變量看作參數(shù);
分類討論,利用函數(shù)的性質(zhì)討論參數(shù),分別判斷單調(diào)性求出最值;
數(shù)形結(jié)合法,將不等式兩端的式子分別看成兩個函數(shù),作出函數(shù)圖象,列出參數(shù)的不等式求解18、(1)證明見解析,;(2).【解析】(1)計算可得出,根據(jù)等比數(shù)列的定義可得出數(shù)列為等比數(shù)列,確定該數(shù)列的首項和公比,可求得數(shù)列的通項公式,進而可求得數(shù)列的通項公式;(2)求得,利用錯位相減法可求得.【小問1詳解】證明:對任意的,,則,則,因為,則,,,以此類推可知,對任意的,,所以,,所以,數(shù)列是等比數(shù)列,且該數(shù)列的首項為,公比為,所以,,則.【小問2詳解】解:,則,,下式上式得.19、(1);(2).【解析】(1)先利用數(shù)量積和余弦值得到,再利用面積公式計算即得結(jié)果;(2)根據(jù)等差數(shù)列得到,再結(jié)合余弦定理進行運算得到關于b的關系,求值即可.【詳解】(1)由得,所以,所以,所以,所以;(2)因為a、b、c成等差數(shù)列,所以,由余弦定理得,即,解得.20、【解析】設線段的中點的坐標為,點的坐標為,根據(jù)中點坐標公式和代入法求得線段中點的軌跡方程.【詳解】解設線段的中點的坐標為,點的坐標為,則用代入法求得所求方程為.【點睛】本題考查了中點坐標公式和代入法求動點的軌跡方程,屬于容易題.21、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度佳作大合集【人力資源管理】十篇
- 單位管理制度集錦選集人事管理篇
- 2024版展覽廳裝修與展示設計合同3篇
- 2024年超耐磨PVC地板供應合同
- 2024深圳小微企業(yè)社保補貼政策執(zhí)行細則與合同規(guī)范3篇
- 2022-2024年中考歷史試題分類匯編:政權分立與民族交融(原卷版)
- 2024版借款合同收據(jù)模板
- 2023-2024年初級銀行從業(yè)資格之初級風險管理題庫及答案
- 2022-2024年三年高考1年模擬英語試題分類:閱讀理解七選五(解析版)
- 2024年銷售代理合同范本:奢侈品品牌代理3篇
- 大慶市2025屆高三年級第二次教學質(zhì)量檢測(二模)政治試卷(含答案)
- 2025年內(nèi)蒙古阿拉善額濟納旗事業(yè)單位引進48人歷年高頻重點提升(共500題)附帶答案詳解
- 2025年內(nèi)江資中縣融媒體中心招考聘用新媒體工作人員3人高頻重點提升(共500題)附帶答案詳解
- 裝修材料合同范例
- 【7地RJ期末】安徽省合肥市廬江縣2023-2024學年七年級上學期期末地理試題(含解析)
- 共用線路三方協(xié)議合同范例
- 戰(zhàn)略規(guī)劃的關鍵要點
- 社會工作服務質(zhì)量保障措施
- 雅禮中學2024-2025學年初三創(chuàng)新人才選拔數(shù)學試題及答案
- 冬季高空作業(yè)施工方案
- 山西云時代技術有限公司招聘筆試題目
評論
0/150
提交評論