2025年新高考數(shù)學名校選填壓軸好題匯編(四)(解析版)_第1頁
2025年新高考數(shù)學名校選填壓軸好題匯編(四)(解析版)_第2頁
2025年新高考數(shù)學名校選填壓軸好題匯編(四)(解析版)_第3頁
2025年新高考數(shù)學名校選填壓軸好題匯編(四)(解析版)_第4頁
2025年新高考數(shù)學名校選填壓軸好題匯編(四)(解析版)_第5頁
已閱讀5頁,還剩77頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1.(廣東省五校2023-2024學年高三10月聯(lián)考(二)數(shù)學試題)設函數(shù)f(x(=若方程f(x(A.(-∞,-1(B.(-1,0(C.(0,1(D.(1,+∞(令g(x(=f(x(-x=方程f(x(=x+b有3個不同的實根等價于g(x(與y=b’(x(=-1=,(x(<0;∴g(x(在(0,1(上單調遞增,在(1,+∞(上單調遞減,∴g(x(max=g(1(=-1;A.B.C.D.D1=D1所以A1E⊥平面DCC1D1,所以A1E⊥EQ,所以A1E=2×所以EQ=7-3=2,3.(廣東省七校2024屆高三第二次聯(lián)考數(shù)學公眾號:慧博高中數(shù)學題庫試卷)已知a>0,f(x(=(aex-ln(x+b(,當x>0時,公眾號:慧博高中數(shù)學題庫f(x(≥0,則a(1-b(3的最大值為()A.B.C.D.x-在(0,+∞(為增函數(shù),由y=aex與y=圖象知,y=aex-在(0,+∞(有唯一的零點x0,顯然f(x(=(aex-(ln(x+b(的定義域為{x|-b〈x且x〈0{,且f(1-b(=0x-,y=ln(x+b(均在(-b,+∞(單調遞增,-b,+∞(時,ln(x+b(>0,因為f(x(≥0,所以aex->0,所以當x=1-b時,aex-=0,ln(x+b(=0, 故g(x(≤g(2(=,所以a(1-b(3=≤,當且僅當1-b=2即b=-1時等號成立;D.A.2B.5D.4C的漸近線的方程為y=±x,y=-1xrx=1x0-yy=-1xrx=1x0-y0y-y0=2(x-x0(,(y=-0+y0不妨取Ax0-y0,-x0+y0(,同理可得Bx0+y0,x0+y0(,則|OA|=x0-y0(2+(-x0+y0(2、52x、525=4x05=4x-y公眾號:慧博高中數(shù)學題庫公眾號:慧博高中數(shù)學題庫+,1),,若方程[f(x)]2-af(()A.B.或1C.1D.或2由f(x(<0得x+2<0,即x<-2時,f(x)單調遞減,由f(x(>0得x+2>0,即-2<x≤0時,f(x)單調遞增,當x=-2時,f(x)取得極小值f(-2)=-,f(0)=1,作出f(x)的圖象如圖:由圖象可知當0<f(x(≤1時,有三個不同的x與f(x)對應,設t=f(x(,方程[f(x)]2-af(x)+=設=t2-at+PQ|的最大值和最小值分別為m和n,則m+n的值為()02+max=|PO1|max+r=37+r,此時點P(2,-3(,|PQ|min=|PO1|min-r=27-r,此時P(-2,3(,即m=37+r,n=7-r,所以m+n=27A.B.-C.2D.-2所以f(x(=asinx+cosx,由函數(shù)f(x(圖象的對稱軸方程為x=kπ+(k∈Z(,得f(2kπ+-x(=f(x((k∈Z(,、、A.[1,3[B.[1,2[C.[3,2[A.B.4C.D.3-4kx-4=0,則x1+x2=4k,x1x2=-4,故y1y2=?=1,又|MF|=y1+=y1+1,|NF|=y2+=y2+1,則2|MF|+|NF|=2(y1+1(+(y2+1(=2y1+y2+≥22y1×y2+=,A.(1+x((1+x2((1+x3(?(1+x10(B.(1+x((1+2x((1+3x(?(1+10x(C.(1+x(2(1+x2(2(1+x3(2(1+x4(2?(1+x10(2D.(1+x(2(1+x+x2(2(1+x+x2+x3(2?(1+x+x2+?+x10(2總計m=66種.對C,(1+x(2(1+x2(2(1+x3(2(1+x4(2?(1+x10(2=(1+x((1+x2((1+x3((1+x4(?(1+x10((1+x((1+x2((1+x3((1+x4(?(1+x10(x93422對D,(1+x(2(1+x+x2(2(1+x+x2+x3(2?(1+x+x2+?+x10(2=(1+x((1+x+x2((1+x+x2+x3(?(1+x+x2+?+x10(×(1+x((1+x+x2((1+x+x2+x3(?(1+x+x2+?+x10(,故D錯誤.)D.)D.A.4412.(湖南省長沙市長郡中學2024屆高三月考(二)數(shù)學試卷)設函數(shù)f(x(=(x2+ax+b(lnx,若f(x(≥0,A.-2B.-1C.2D.1要使f(x(≥0,則二次函數(shù)y=x2+ax+b,在0<x<1上y<0,在x>1上y>0,A.1+2B.2+2C.5FF2=2=D.614.(湖北省云學部分重點高中聯(lián)盟2023-2024學年高三10月聯(lián)考數(shù)學試卷)已知函數(shù)f(x(=cosx-axA.(-∞,-B.(-C.,+∞(D.-,+∞(【解析】因為f(x(=cosx-ax,則f’(x(=-sinx-a,由題意可得f’(x(=-sinx-a≥0對任意x∈0,|恒成立,即-sinx≥a對任意x∈0,|恒成立,所以實數(shù)a的取值范圍是(-∞,-.15.(湖北省云學部分重點高中聯(lián)盟2023-2024學年高三10月聯(lián)考數(shù)學試卷)已知函數(shù)f(x(=lnx-a(x-有兩個極值點x1,x2,則f(x1+x2(的取值范圍是()A.(0,ln2-【解析】由題意可知:f(x(的定義域為(0,+∞(,且f’(x(=-a(1+=-,2-x+a=0有兩個不相等的正根x1,x2,2-x+1=0有兩個不相等的正根x1,x2,Δ=-4>012=1>0則x1+x2=>0,解得0<2=1>0可得f(x1+x2(=f=ln-a-a(=a2-lna-1,令g(a(=a2-lna-1,0<a<,則g’(a(=2a-=<0,即g(a(的值域為(ln2-,+∞(,所以f(x1+x2(的取16.(湖北省武漢外國語學校2023-2024學年高三10月月考數(shù)學試題)已知a∈R,設函數(shù)f(x)=≤1,若關于x的不等式f(x)≥0在R上恒成立,則a的取值范圍為(1)當0≤a≤1時,f(x)=x2-2ax+2a=(x-a)2+2a-a2≥2a-a2=a(2-a)>0,17.(湖北省武漢外國語學校2023-2024學年高三10月月考數(shù)學試題)已知函數(shù)f(x(=f(-x(,x∈R,f(5.5(=1,函數(shù)g(x(=(x-1(?f(x(,若g(x+1(為偶函數(shù),則g(-0.5(的值為()A.3B.2.5C.2由g(x(=(x-1(?f(x(,可得(x-1(?f(x(=(1-x(?f(2-x(,又因為f(x(=f(-x(,所以f(x(是定義在R上的偶函數(shù),所以f(x(=-f(2-x(=-f(x-2),所以f(x-4(=f[(x-2)-2]=-f(x-2)=-[f(x)]=f(x),即f(x-4)=f(x),所以函數(shù)f(x(是周期為4的周期函數(shù),所以f(5.5)=f(1.5+4)=f(1.5)=f(-2.5)=f(2.5)=1,則g(-0.5)=g(2.5)=(2.5-1)f(2.5)=1.5.18.(湖北省新八校協(xié)作體2023-2024學年高三10月聯(lián)考數(shù)學試題)已知函數(shù)f(x(的定義域為R,y=f(x(+2ex是偶函數(shù),y=f(x(-4e-x是奇函數(shù),則f(x(的最小值為()【解析】因為y=f(x(+2ex是偶函數(shù),所以f(x(+2ex=f(-x(+2e-x,即f(x)-f(-x)=2e-x-2ex①,又因為y=f(x(-4e-x是奇函數(shù),所以f(-x)-4e-x=-f(x)+4ex,即f(x)+f(-x)=4ex+4e-x②,聯(lián)立①②可得f(x)=ex+3e-x,A.(-1,e(B.(-∞,-1(∪[e,+∞(C.[-1,1)當x<0時,g(x(=-=-+=,-k|;-k|=ex,x=1=0且y’|x=1=1,所以函數(shù)y=lnx在x=1的切線方程為y=x-1,又由函數(shù)y=-lnx,可得y’=-,可得y|x=1=0且y’|x=1=-1,所以函數(shù)y=-lnx在x=1的切線方程為y=-x+1,所以函數(shù)y=|lnx|與y=|x-1|只有一個公共點,公眾號:慧博高中數(shù)學題庫公眾號:慧博高中數(shù)學題庫當-1≤k<1時,g(x(=f(x(-||恰有2個零點;合求解.x和lnx相關的常見同構模型a≤blnb?ealnea≤blnb,構造函數(shù)f(x(=xlnx或g(x(=xex;?構造函數(shù)f(x(=或g(x(=;a±a>b±lnb?ea±lnea>b±lnb,構造函數(shù)f(x(=x±lnx或g(x(=ex±x.y=f(x(相切于(x1,f(x1((,(x2,f(x2((兩點,其中x1<x2.若當x∈(0,x1(時,f(x(>k,則函數(shù)f(x(-kx在(0,+∞(上的極大值點個數(shù)為()A.0B.1C.2D.3,x2(,x5(,x3(,x4(設g(x(=f(x(-kx,則g(x(=f(x(-k,∴g(x(在(0,x1(,(x3,x2(,(x4,x5(上單調遞增,在(x1,x3(,(x2,x4(,(x5,+∞(上單調遞減,∴g(x(=f(x(-kx有x=x1,x=x2和x=x5三個極大值點.6)的圖象向右平移個單位長度得到函數(shù)g(x)的圖象,若g(xA.1B.2C.3D.4由題意得g(x)的圖象向左移個單位長度得到函數(shù)f(x)的圖象,1為奇函數(shù),f(x+2(為偶函數(shù),則f(1(+f(2(+?+f(16(=()因為f(x+2(為偶函數(shù),所以f(x+2(=f(2-x(,則f(x+4(=f(-x(,所以f(x(+f(x+4(=2,f(x+4(+f(x+8(=2,所以f(x(=f(x+8(,故f(x(的周期為8,因為f(1(+f(5(=2,f(2(+f(6(=2,f(3(+f(7(=2,f(4(+f(8(=2,所以f(1(+f(2(+?+f(16(=2[f(1(+f(2(+?+f(8([=16,均為R,若f(x(=f(-x(+2x,f(x(的圖象關于直線x=1對稱,且f(2(=0,則f()A.10B.20C.-10D.-20所以f’(x)=-f’(2-x),又f(x)=f(-x)+2x,則f’(x)=-f’(-x)+2,所以-f’(2-x)=-f’(-x)+2,從而f’(2+x)=f’(x)-2,于是fI(1)+fI(3)+fI(5)+?+fI(19)=0-2-4-?-18=-90,fI(2)+fI(4)+?+fI(20)=-1-3-?-19=-100,所以=-190,又由f(x)=f(2-x)及f(x(=f(-x(+2x得f(2-x)=f(-x)+2x,從而f(2+x)=f(x)-2x,而f(2)=0所以f(20)=f(18)-36=f(16)-32-36=?=f(2)-4-8-?-32-36=-180,所以=-180-=10,故EM=EN=,易得Rt△MEO≌Rt△NEO,F(xiàn)(x(=ex+2f(x+2(是偶函數(shù),其函數(shù)圖象為不間斷曲線且(x-2([fI(x(+f(x([>0,則不等式xf(lnx(<e3f(3(的解集為()【解析】由(x-2([f’(x(+f(x([>0,得x[f’(x+2(+f(x+2([>0,則當x>0時,得f’(x+2(+f(x+2(>0,F’(x(=ex+2f(x+2(+ex+2f’(x+2(=ex+2[f(x+2(+f’(x+2([,則當x>0時,F’(x(>0,得函數(shù)F(x(在(0,+∞(上單調遞增, 因為xf(lnx(<e3f(3(,所以F(lnx-2(<F(1(,由于F(x(=ex+2f(x+2(是偶函數(shù),則F(|lnx-2|(<F(1(,而函數(shù)F(x(在(0,+∞(上單調遞增,得|lnx-2|<1,得-1<lnx-2<1,()A.x+y≤1B.x+y≥-2C.x2+y2≤2D.x2+y2≥1、、因為x2+y2-xy=1變形可得(x-2+y2=1,設x-=cosθ,y=sinθ,所以x=cosθ+sinθ,、、27.(多選題)(廣東省五校2023-2024學年高三10月聯(lián)考(二)數(shù)學試題)若正實數(shù)x,y滿足xex-1=y(1+lny(,則下列不等式中可能成立的是()A.1<x<yB.1<y<xC.x<y<1D.y<x<1x-1=y(1+lny(,所以xex-1=(1+lny(e(1+lny(-1,1+lny>0,令f(x(=xex-1,x∈(0,+∞(,則f’(x(=(x+1(ex-1>0,所以f(x(=xex-1在(0,+∞(上單調遞增,由f(x(=f(1+lny(,可得x=1+lny,令g(x(=lnx+1-x,則g’(x(=-1=,所以當0<x<1時g’(x(>0,當x>1時g’(x(<0,所以g(x(在(0,1(上單調遞增,在(1,+∞(上單調遞減,公眾號:慧博高中數(shù)學題庫公眾號:慧博高中數(shù)學題庫當y≠1時1<x<y或x<y<1,結合y=lnx+1與y=x的圖象也可得到所以1<x<y或x<y<1.D1D.若P是棱A1B1的中點,則三棱錐P-CEF的外接球的表面積是41πMN∩DN=N,EF∩CE=E,MN,DN?平面MNDB,EF,CE?平面CEF∴P點的軌跡為線段NM,又MN=2選項正∴三棱錐P-DEF的體積為定值,∴B選項正確;4,且AA1⊥平面A1B1C1D1,則A1P=,則FE⊥PE,∴G到E,F(xiàn),P的距離相等,又GH⊥平面PEF,∴三棱錐P-CEF的外接球的球心O在GH上,設三棱錐P-CEF的外接球的半徑為R,則PO=CO=R,點M.N為拋物線C的準線與y軸的交點.則以下結論正確的是()B.直線PN的傾斜角α≥設AB:y=kx+1,與C的方程聯(lián)立得x2-4kx-4=0,設A(x1,y1(,B(x2,y2(,,F(xiàn)·F=-4,所以A錯誤;x記直線AB的斜率為k,令f(x)=x2,則f’(x)=x,則k1=f’(x1(=x1,k2=f’(x2(=x2, x又直線AB過點F(0,1),故直線AB的方程為x-y+1=0,C正確;MA:y-y1=(x-x1(,又y1=,所以MA:y=x-,同理MB:y=x-,聯(lián)立解得M,,即M(2k,-1),又F(0,1),故選:BCD.是一條連續(xù)不斷的曲線,記f(x(的導函數(shù)為f’(x(,則()A.存在f(x(和實數(shù)t,使得f’(x(=tf(x(B.不存在f(x(和實數(shù)t,滿足f(x(+f(t(=f(2x(C.存在f(x(和實數(shù)t,滿足f(xt(=tf(x(D.若存在實數(shù)t滿足f’(x(=f(x+t(,則f(x(只能是指數(shù)函數(shù)【解析】令f(x(=ax,則存在實數(shù)lna使得f’(x(=axlna,A正確;存在t=2,f(x(=logax,f(x(+f(t(=logax+loga2=loga2x=f(2x(,故B錯誤;令f(x(=logax,則f(xt(=logaxt=tlogax=tf(x(,C正確;若f(x(=sinx,f’(x(=cosx=sin(x+,故D錯誤. ()C.yAyB=xPD.cos∠AFP=設N(xN,yN(且xN≠1,則P(2xN-1,2yN(,代入得x+y=,以PF為直徑的圓N的方程可寫為(x-xP((x-1(+y(y-yP(=0,令x=0,可得xP+y(y-yP(=0,即y2-yPy+xP=0,=y+1?y+1=yy+(y+y(+1=1-4xP,|PF|=(xP-1(2+y=1-4xP,=,故D正確.f(1((為曲線y=f(x(的對稱中心C.當a<0時,x=a是f(x(的極大值點D.當a>1時,f(x(有三個零點即存在這樣的a,b使得f(x)=f(2b-x),3-3ax2+1=2(2b-x)3-3a(2b-x)2+1,因為等式右邊2(2b-x(3展開式含有x3的項為2C(2b(0(-x(3=-2x3,且f(x)+f(2-x)=2x3-3ax2+1+2(2-x)3-3a(2-x)2+1=(12-6a)x2+(12a-24)x+18-12a,f’所有f(x)在x=a處取到極大值,x=a是f(x(的極大值點f’f’B12B3=3,?,Bn-1Bn=n(n≥2),OC1=1,C1C2=C2C3=?=Cn-1Cn=(n≥2),四邊形OB1D1C1,D3C3B.長方形OBnDnCn的面積為xDn=1+2+3+?+n=,yDn=1+(n-1(=xDn+==(yDn(2,所以C正確.2+22+?+n2=,B.水面EFGH所在四邊形的面積為定值f(x(=g(x(,g(x(=f(x(,若f(2x(=2f(x(g(x(,則()A.g(x(的圖象關于直線x=0對稱B.g(2x(=g2(x(+f2(x(C.g(0(=0或1D.g2(x(-f2(x(=1【解析】對于A,由f(x(為R上的奇函數(shù),則f(0(=0,f(x(+f(-x(=0,則f’(x(-f’(-x(=0,所以g(x(-g(-x(=0,即g(x(為偶函數(shù),因此關于直線x=0對稱,故A正確;對于B,由f(2x(=2f(x(g(x(,則兩邊同時求導得:2f’(2x(=2f’(x(g(x(+2f(x(g’(x(,即g(2x(=g2(x(+f2(x(,故B正確;由g(x(f(x(-f(x(g(x(=0,則2g(x(g’(x(-2f(x(f’(x(=0,即[g2(x([’-[f2(x([’=0,即[g2(x(-f2(x([’=則g2(x(-f2(x(=C(C為常數(shù)),設h(x(=g2(x(-f2(x(=C(C為常數(shù)),對于C,由g(2x(=g2(x(+f2當g(0(=0,則h(0(=g2(0(-f2(0(=0,則h(x(=g2(x(-f2(x(=0,即f(x(=±g(x(,又g(x(為偶函數(shù),則f(x(即是奇函數(shù)也是偶函數(shù),與f(x(在R上單調遞增矛盾,對于D,當g(0(=1時,則h(0(=g2(0(-f2(0(=1,則h(x(=g2(x(-f2(x(=1,即g2(x(-f2(x(=1,故D正36.(多選題)(湖南省長沙市長郡中學2024屆高三月考(二)數(shù)學試卷)已知函數(shù)f(x)=sinωx+acosωx(xA.a>0A.a>0設F(x(=f(x-=2sin2(x-+=2sin2x,F(xiàn)(-x(=2sin[2(-x)]=-2sin2x=-F(x(,所以F(x(為奇函數(shù),即函數(shù)f(x-為奇函數(shù),所以B不正確.M在y軸上的射影為點N.若|MN|=|NF|,則()A.l的斜率為31>0,y2<0,,Nx-(,、x=或x=、(y=2px(y=3p(y=-3p、即A,-3p,N、A.a>0,c<0B.+<-2C.a+c>0D.<-12+c2>-2ac,且ac<0,所以+<-2,故B正確;對于D:因為(a+2c(+(a+b(=(2a+b+c(+c=c<0,可得a+2c<-(a+b(,又因為2a+b+c=(a+b(+(a+c(=0,可得a+b=-(a+c(>0,所以<-1,故D正確;A.sinα+sinβ>1B.tanα?tanβ<1C.cosα+cosβ<、2D.tan(α-β(>tan可得:0<β<α<,且α+β>,<α<,對于選項A:因為β>-α,且0<-α<,則sinβ>sin=cosα,可得sinα+sinβ>sinα+cosα=、2sin,因為<α<,則<α+<,可得<sin<1,所以sinα+sinβ>、2sin>1,故A正確;對于選項B:因為tan(α+β(=-<0,且tanα,tanβ>0,即tanα+tanβ>0,則1-tanα?tanβ<0,即tanα?tanβ>1,故B錯誤;對于選項C:因為β>-α,則cosβ<cos=sinα,則cosα+cosβ<cosα+sinα=、2si由選項A可知:<sin<1,對于選項D:因為tan(α-β(= tan1-tan2又因為0<α-β<,則0<<,可得0<tan<1,即0<1-tan2<1,所以tan(α-β(=->tan,故D正確;3=-f(x(在x=x0處的切線與函數(shù)y=f(x(的圖象有且僅有兩個交點令f’(x(=6x2=0解得x=0,且f(0(=B選項,f(x)=2x3-3ax2+1,f’(x(=6x2-6ax=6x(x-a(,若f(x)=2x3-3ax2+1有三個不同的零點x1,x2,x3,則f(x(=2(x-x1((x-x2((x-x3(=2x3-2(x1+x2+x3(x2+(x1x2+x2x3+x1x3(x-2x1x2x3,通過對比系數(shù)可得-2x1x2x3=1?x1x2x3=-,正確.則f(x(=f(2b-x(,即2x3-3ax2+1=2(2b-x(3-3a(2b-x(2+1,f(x)=2x3-3ax2+1,f’(x(=6x2-6ax,則f(x0)=2x-3ax+1,f’(x0(=6x-6ax0,所以f(x(在x=x0處的切線方程為y-(2x-3ax+1(=(6x-6ax0((x-x0(,y=(6x-6ax0((x-x0(+(2x-3ax+1(,由{-3ax+1(,消去y得2x3-3ax2+1=2x-3ax+1+(6x-6ax0((x-x0(①,3-2x=2(x3-x(=2(x-x0((x2+xx0+x(,-3ax2+3ax=-3a(x2-x(=-3a(x-x0((x+x0(,所以①可化為2(x-x0((x2+xx0+x(-3a(x-x0((x+x0(-(6x-6ax0((x-x0(=0,提公因式x-x0得(x-x0([2(x2+xx0+x(-3a(x+x0(-(6x-6ax0([=0,化簡得(x-x0([2x2+(2x0-3a(x-(4x-3ax0([=0,進一步因式分解得(x-x0(2(2x+4x0-3a(=0,解得x1=x0,x2=,所以x1-x2=x0-==≠0,所以x1≠x2,f(x(在x=x0處的切線與函數(shù)y=f(x(的圖象有且僅有兩個交點,正確.f(x+為奇函數(shù),f(x+π(為偶函數(shù).當x∈[0,π[時,f(x(=cosxA.f(x(在(3π,4π(上單調遞減B.f(C.點(-π,0(是函數(shù)f(x(的一個對稱中心D.方程f(x(+lgx=0有5個實數(shù)解因為f(x+為奇函數(shù),所以f(-x+(=-f(x+(,即f(-x(=-f(x+π(,因為f(x+π(為偶函數(shù),所以f(-x+π(=f(x+π(,所以f(-x+π)=-f(-x),即f(x+π)=-f(x)?f(x+2π)=f(x),則f(x)周期為2π,由f(-x+π(=f(x+π(得,f(x)的一條對稱軸為直線x=π,f(x(=cosx,對于A,f(x(在(π,2π(上單調遞增,所以f(x(在(3π,4π(上單42.(多選題)(湖北省新八校協(xié)作體2023-2024學年高三10月聯(lián)考數(shù)學試題)[x[表示不超過x的最大整A.若x∈(0,1(,則f(-x(+f(x(+B.f(x+y(<f(x(+f(y(C.設g(x(=f(2x(+f(g(k(=401D.所有滿足f(m(=f(n((m,n(的點(m,n(組成的區(qū)域的面積和為f(x(=0,f(-x(=-1,則f(-x(+=-1+<0=-f(x(+,故A正確;B選項,取x=2.5,y=3.5,則f(x+y(=f(6(=6>5=f(2.5(故B錯誤;R,且滿足f(x(+f(y(=f(x+y(-2xy+1,f(1(=3,則下列結論正確的是()A.f(4(=21B.方程f(x(=x有整數(shù)解C.f(x+1(是偶函數(shù)D.f(x-1(是偶函數(shù)【解析】對于A,因為函數(shù)f(x)的定義域為R,且滿足f(取x=y=0,得:f(0)+f(0)=f(0)取x=y=1,得f(1)+f(1)=f(2)-2+1,則f(2)=7,取x=y=2,得f(2)+f(2)=f(4)-8+對于B,取y=1,得f(x)+f(1)=f(x+1)-2x+1,則f(x+1)-f(x)=2x+2,f(x)-f(x-1)=2(x-1)+2,f(x-1)-f(x-2)=2(x-2)+2,?,f(2)-f(1)=2+2,以上各式相加得f(x(-f(1(=+2(x-1(=x2-x+2(x-1(=x2+x-2,所以f(x(=x2-x+1,x≠1,而f(-x(+f(x(=2+2x2,故當x<-1時,有f(x(=2+2x2-f(-x(=x2-x+1對于D,若f(x-1(是偶函數(shù),則應有f(0(=f(-2(,由f(x)+f(y)=f(x+y)-2xy+1,,f(0)=1,f(2)=7取x=2,y=-2,得f(2)+f(-2)=f(0)+8+1,所以f(-2)=3而f(0(=1≠f(-2(=3,故D錯誤;44.(多選題)(河南省七校聯(lián)考2024屆高三第二次聯(lián)合教學質量檢測數(shù)學試題)如圖,在長方體ABCD-A.線段DP長度的最小值為B.存在點P,使AP+PC=23C.存在點P,使AC⊥平面MNPD.以B為球心,為半徑的球體被平面ABC所以邊AB上高為BDsin∠ABD=2,A正確;sin∠ABA=,則cos∠ABC=cos(∠ABA+(=-sin∠ABA=-,,因此B錯;所以∠DMQ+∠MDQ=∠DMQ+∠DNM=,所以DC⊥MN,又長方體中BC與側面DCCD垂直,MN?側面DCCD,因此BC⊥MN,BC與CD是平面BCDA內兩條相交直線,因此MN⊥平面BCDA,又AC?平面BCDA,所以MN⊥AC,PQ∩MN=Q,且PQ,MN?平面PMN,所以AC⊥平面PMN,C正確;由BB⊥平面ABCD,AC?平面ABCD得BB⊥AC,又正方形ABCD中,AC⊥BD,BD∩BB=B,BD,BB?平面BDDB,所以AC⊥平面BDDB,而BH?平面BDDB,所以AC⊥BH,AC∩BO=O,AC,BO?平面ABC,所以BH⊥平面ABC,平面ABC截球所得截面圓半徑為r,則r=45.(多選題)(河南省部分名校2023-2024學年高三階段性測試(二)數(shù)學試題)已知函數(shù)f(x)=sin2x+A.f(x)為奇函數(shù)B.f(x)的值域為C.f(x)的圖象關于直線x=對稱D.f(x)以π為周期滿足f(-x(=-f(x(,所以函數(shù)是奇函數(shù),故A正確;的值域是(-∞,-3[∪[3,+∞(,故B錯誤;f-x(=sin(3π-2x(+=sin2x+=f(x(,所以函數(shù)f(x(關于x=對稱,故C正f(x+π(=sin(2x+2π(+=sin2x+=f(x(,所以函數(shù)f(x(的周期為π,故D正確.x-ax3+2ax2lnx≥0恒成立,則實數(shù)a的可能取值為()A.1B.C.eD.e2則又可化為-a(x-lnx2(≥0?-aln≥0,x2x3’x2x3’’則關于t的不等式t-alnt≥0在,+∞(恒成立,所以h(t)min=h(e)=e,公眾號:慧博高中數(shù)學題庫公眾號:慧博高中數(shù)學題庫A.f(x(的圖象無對稱中心B.f(x(+f=2C.f(x(的圖象與g(x(=--1的圖象關于原點對稱D.f(x(的圖象與h(x(=ex-1的圖象關于直線y=x對稱假設f(x(的圖象有對稱中心(x0,y0),取P(x,y),其中x>2x0,P關于點(x0,y0)的對稱點是Q(2x0-x,2y0-選項C,設P(x,y)是f(x)圖象關于原點對稱的圖象上任一點,它關于原點的對稱點為Q(-x,-y)在f(x)的因此-y=+1,即y=--1,所以f(x)的圖象上任一點關于原點的對稱點在g(x)的圖象上,111ex-148.(多選題)(河南省部分名校2023-2024學年高三10月月考數(shù)學試卷)記函數(shù)f(x(=ex-的零點為A.x0-lnx0=0B.x0∈,C.當x>時,f(x(>x+1D.x0為函數(shù)g(x(=的極值點x0-=0?ex0=?x0=-lnx0?x0+lB選項,f(x(=ex+>0,則f(x(在(0,+∞(上單調遞增,即f(x(在(0,+∞(上有唯一零點x0.>0.又f>0.C選項,令h(x(=f(x(-x-1=ex-x--1,x∈(0,+∞(.則g/(x(=ex-1+>0,得g(x(在(0,+∞(上單調遞增,則當時,h(x(=f(x(-x-1>h((>0?f(x(>x+1,故C正確;由A選項分析,-(1++x0+lnx0+1=-(1+得-數(shù)為f/(x(,且滿足f(x+y(=f(x(+f(y(+xy,f(1(=0,f/(1(=,則A.f(x(的圖像關于點(1,0(成中心對稱B.f/(2(=對于B,令y=1,則有f(x+1(=f(x(+f(1(+x=f(x(+x,兩邊同時求導,得f/(x+1(=f/(x(+1,對C:令y=1,則有f(x+1(=f(x(+f(1(+x,即f(x+1(-f(x(=x,則f(2024(=f(2024(-f(2023(+f(2023(-f(2022(+?-f(1(+f(1(對D:令y=1,則有f(x+1(=f(x(+f(1(+x,即f(x+1(=f(x(+x,則f/(x+1(=f/(x(+1,即f/(x+1(-f/(x(=1,又f/(1(=,故f/(k(=+k-1=k-50.(多選題)(河南省部分名校2024屆高三月考(一)數(shù)學試題)設函數(shù)f(x)的A.f(x+4π)=f(x)B.f(x)的圖象關于直線對稱C.f(x)在區(qū)間,2π(上為增函數(shù)D.方程f(x)-lgx=0僅有4個實數(shù)解因為f(x-為奇函數(shù),所以f(x)的圖象關于點中心因為f(x+為偶函數(shù),所以f(x)的圖象關于直線對稱.可畫出y=f(x)的部分圖象大致如下(圖中x軸上相鄰刻度間距離均為對于A,由圖可知f(x)的最小正周期為2π,所以f(x+4π)=f(x),故A正確.數(shù)為f’(x),若xf’(x)-1<0.f(e)=2,則關于x的不等式f(ex)<x+1的解集為.g(e)=f(e)-lne=1,因此f(ex)<x+1?f所以不等式f(ex)<x+1的解集為(1,+∞). . 可知f(x)為定義在R上的奇函數(shù);因為f(a2(+f(a3+a4(=0,則f(a3+a4(=-f(a2(=f(-a2(,n+3=an(n∈N*(可知:3為數(shù)列{an{的周期,則an+an+1+an+2=0,53.(廣東省七校2024屆高三第二次聯(lián)考數(shù)學試卷)函數(shù)f(x(=8ln(sinx(+sin22x在個數(shù)為個.【解析】f(x(=8ln(sinx(+sin22x=8ln(sinx(+1-cos22x=8ln(sinx(+1-(1-2sin2x)2=8ln(sinx(+4sin2x-4sin4x,令t=sinx∈(0,1),則f(t)=8lnt+4t2-4t4,所以f(t)在(0,1)上單調遞增,所以f(t)<f(1)=8ln1+4×12-4×14=0,所以函數(shù)f(x(=8ln(sinx(+sin22x在區(qū)間上的零點個數(shù)為0個.f(x(>0,f(x(單調遞增,5+125+122

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論