2024屆天津市七校重點(diǎn)中學(xué)高三“一診”模擬考試數(shù)學(xué)試題_第1頁
2024屆天津市七校重點(diǎn)中學(xué)高三“一診”模擬考試數(shù)學(xué)試題_第2頁
2024屆天津市七校重點(diǎn)中學(xué)高三“一診”模擬考試數(shù)學(xué)試題_第3頁
2024屆天津市七校重點(diǎn)中學(xué)高三“一診”模擬考試數(shù)學(xué)試題_第4頁
2024屆天津市七校重點(diǎn)中學(xué)高三“一診”模擬考試數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆天津市七校重點(diǎn)中學(xué)高三“一診”模擬考試數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,,則()A. B. C. D.2.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.43.某市政府決定派遣名干部(男女)分成兩個(gè)小組,到該市甲、乙兩個(gè)縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨(dú)成組,則不同的派遣方案共有()種A. B. C. D.4.若函數(shù)有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的值為()A. B. C. D.5.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.176.已知集合,,則()A. B.C. D.7.已知滿足,則()A. B. C. D.8.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.9.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.10.已知為虛數(shù)單位,實(shí)數(shù)滿足,則()A.1 B. C. D.11.若,,,則下列結(jié)論正確的是()A. B. C. D.12.在正項(xiàng)等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.8二、填空題:本題共4小題,每小題5分,共20分。13.若復(fù)數(shù)滿足,其中為虛數(shù)單位,則的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點(diǎn)的坐標(biāo)為_____.14.若復(fù)數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.15.(5分)在長方體中,已知棱長,體對角線,兩異面直線與所成的角為,則該長方體的表面積是____________.16.若函數(shù)滿足:①是偶函數(shù);②的圖象關(guān)于點(diǎn)對稱.則同時(shí)滿足①②的,的一組值可以分別是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2019年是五四運(yùn)動(dòng)100周年.五四運(yùn)動(dòng)以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚(yáng)五四精神在青年節(jié)到來之際,學(xué)校組織“五四運(yùn)動(dòng)100周年”知識競賽,競賽的一個(gè)環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機(jī)抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類題的概率;(2)若甲同學(xué)答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨(dú)立.現(xiàn)已知甲同學(xué)恰好抽中2道A類題和1道B類題,用X表示甲同學(xué)答對題目的個(gè)數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.18.(12分)已知(1)若,且函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的范圍;(2)若函數(shù)有兩個(gè)極值點(diǎn),且存在滿足,令函數(shù),試判斷零點(diǎn)的個(gè)數(shù)并證明.19.(12分)已知函數(shù).(1)求的極值;(2)若,且,證明:.20.(12分)的內(nèi)角的對邊分別為,且.(1)求;(2)若,點(diǎn)為邊的中點(diǎn),且,求的面積.21.(12分)已知為坐標(biāo)原點(diǎn),單位圓與角終邊的交點(diǎn)為,過作平行于軸的直線,設(shè)與終邊所在直線的交點(diǎn)為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.22.(10分)已知函數(shù)(1)求單調(diào)區(qū)間和極值;(2)若存在實(shí)數(shù),使得,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

求得集合中函數(shù)的值域,由此求得,進(jìn)而求得.【詳解】由,得,所以,所以.故選:A【點(diǎn)睛】本小題主要考查函數(shù)值域的求法,考查集合補(bǔ)集、交集的概念和運(yùn)算,屬于基礎(chǔ)題.2、A【解析】

由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個(gè)焦距為,由題意又,則,,,所以離心率,故選:A.【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題3、C【解析】

在所有兩組至少都是人的分組中減去名女干部單獨(dú)成一組的情況,再將這兩組分配,利用分步乘法計(jì)數(shù)原理可得出結(jié)果.【詳解】兩組至少都是人,則分組中兩組的人數(shù)分別為、或、,

又因?yàn)槊刹坎荒軉为?dú)成一組,則不同的派遣方案種數(shù)為.故選:C.【點(diǎn)睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計(jì)算能力,屬于中等題.4、D【解析】

推導(dǎo)出函數(shù)的圖象關(guān)于直線對稱,由題意得出,進(jìn)而可求得實(shí)數(shù)的值,并對的值進(jìn)行檢驗(yàn),即可得出結(jié)果.【詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對稱.若函數(shù)的零點(diǎn)不為,則該函數(shù)的零點(diǎn)必成對出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時(shí),令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時(shí),函數(shù)與函數(shù)的圖象有三個(gè)交點(diǎn),不合乎題意;②當(dāng)時(shí),,,當(dāng)且僅當(dāng)時(shí),等號成立,則函數(shù)有且只有一個(gè)零點(diǎn).綜上所述,.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù),考查函數(shù)圖象對稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對參數(shù)的值進(jìn)行檢驗(yàn),考查分析問題和解決問題的能力,屬于中等題.5、C【解析】

首先根據(jù)對數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗(yàn)證即可;【詳解】解:∵,∴當(dāng)時(shí),滿足,∴實(shí)數(shù)可以為8.故選:C【點(diǎn)睛】本題考查對數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.6、A【解析】

根據(jù)對數(shù)性質(zhì)可知,再根據(jù)集合的交集運(yùn)算即可求解.【詳解】∵,集合,∴由交集運(yùn)算可得.故選:A.【點(diǎn)睛】本題考查由對數(shù)的性質(zhì)比較大小,集合交集的簡單運(yùn)算,屬于基礎(chǔ)題.7、A【解析】

利用兩角和與差的余弦公式展開計(jì)算可得結(jié)果.【詳解】,.故選:A.【點(diǎn)睛】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.8、C【解析】

根據(jù)三視圖,可得該幾何體是一個(gè)三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個(gè)三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.9、D【解析】由題意得,函數(shù)點(diǎn)定義域?yàn)榍?,所以定義域關(guān)于原點(diǎn)對稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,故選D.10、D【解析】,則故選D.11、D【解析】

根據(jù)指數(shù)函數(shù)的性質(zhì),取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,即,又由,所以.故選:D.【點(diǎn)睛】本題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質(zhì),求得的取值范圍是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.12、B【解析】

根據(jù)題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點(diǎn)睛】本題考查了等比數(shù)列的計(jì)算,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出得答案.【詳解】,,則,的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點(diǎn)的坐標(biāo)為,故答案為【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.14、【解析】

先求得復(fù)數(shù),再由復(fù)數(shù)模的計(jì)算公式即得.【詳解】,,則.故答案為:【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算和求復(fù)數(shù)的模,是基礎(chǔ)題.15、10【解析】

作出長方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長方體的表面積為.16、,【解析】

根據(jù)是偶函數(shù)和的圖象關(guān)于點(diǎn)對稱,即可求出滿足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關(guān)于點(diǎn)對稱,得,,即,,可取.故,的一組值可以分別是,.故答案為:,.【點(diǎn)睛】本題主要考查了正弦型三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)分布列見解析,期望為.【解析】

(1)甲同學(xué)至少抽到2道B類題包含兩個(gè)事件:一個(gè)抽到2道B類題,一個(gè)是抽到3個(gè)B類題,計(jì)算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計(jì)算概率得分布列,再由期望公式計(jì)算期望.【詳解】(1)令“甲同學(xué)至少抽到2道B類題”為事件,則抽到2道類題有種取法,抽到3道類題有種取法,∴;(2)的所有可能值分別為,,,,,∴的分布列為:0123【點(diǎn)睛】本題考查古典概型,考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望.解題關(guān)鍵是掌握相互獨(dú)立事件同時(shí)發(fā)生的概率計(jì)算公式.18、(1)(2)函數(shù)有兩個(gè)零點(diǎn)和【解析】試題分析:(1)求導(dǎo)后根據(jù)函數(shù)在區(qū)間單調(diào)遞增,導(dǎo)函數(shù)大于或等于0(2)先判斷為一個(gè)零點(diǎn),然后再求導(dǎo),根據(jù),化簡求得另一個(gè)零點(diǎn)。解析:(1)當(dāng)時(shí),,因?yàn)楹瘮?shù)在上單調(diào)遞增,所以當(dāng)時(shí),恒成立.[來源:Z&X&X&K]函數(shù)的對稱軸為.①,即時(shí),,即,解之得,解集為空集;②,即時(shí),即,解之得,所以③,即時(shí),即,解之得,所以綜上所述,當(dāng)函數(shù)在區(qū)間上單調(diào)遞增.(2)∵有兩個(gè)極值點(diǎn),∴是方程的兩個(gè)根,且函數(shù)在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減.∵∴函數(shù)也是在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減∵,∴是函數(shù)的一個(gè)零點(diǎn).由題意知:∵,∴,∴∴,∴又=∵是方程的兩個(gè)根,∴,,∴∵函數(shù)圖像連續(xù),且在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),∴函數(shù)有兩個(gè)零點(diǎn)和.19、(1)極大值為;極小值為;(2)見解析【解析】

(1)對函數(shù)求導(dǎo),進(jìn)而可求出單調(diào)性,從而可求出函數(shù)的極值;(2)構(gòu)造函數(shù),求導(dǎo)并判斷單調(diào)性可得,從而在上恒成立,再結(jié)合,,可得到,即可證明結(jié)論成立.【詳解】(1)函數(shù)的定義域?yàn)?,所以當(dāng)時(shí),;當(dāng)時(shí),,則的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設(shè)函數(shù),則,,則在上恒成立,即在上單調(diào)遞增,故,又,則,即在上恒成立.因?yàn)?所以,又,則,因?yàn)?且在上單調(diào)遞減,所以,故.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性與極值,考查了利用導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)是解決本題的關(guān)鍵,屬于難題.20、(1);(2).【解析】

(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進(jìn)行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因?yàn)闉榈闹芯€,所以,兩邊同時(shí)平方可得,故.因?yàn)?所以.所以的面積.【點(diǎn)睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時(shí)也考查了向量在解三角形中的運(yùn)用,屬于中檔題.21、(1);(2).【解析】

(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1)因?yàn)?,,所以,,所以函?shù)的最小正周期為.(2)因?yàn)?,所以,所以,故函?shù)在區(qū)間上的值域?yàn)?【點(diǎn)睛】本題考查正弦型函數(shù)的周期和值域,運(yùn)用到向量的坐標(biāo)運(yùn)算、降冪公式和二倍角的正弦公式,考查化簡和計(jì)算能力.22、(1)時(shí),函數(shù)單調(diào)遞增,,函數(shù)單調(diào)遞減,;(2)見解析【解析】

(1)求出函數(shù)的定義域與導(dǎo)函數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,即可得到函數(shù)的極值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論