版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
貴州省“陽光校園·空中黔課”階段性檢測2025屆高一上數(shù)學期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在平行四邊形中,,則()A. B.C.2 D.42.函數(shù)的零點所在區(qū)間為()A.(0,) B.(,)C.(,1) D.(1,2)3.已知,且滿足,則值A(chǔ). B.C. D.4.如圖,三棱柱中,側(cè)棱底面,底面三角形是正三角形,是中點,則下列敘述正確的是A.平面B.與是異面直線C.D.5.已知正數(shù)、滿足,則的最小值為A. B.C. D.6.四名學生按任意次序站成一排,若不相鄰的概率是()A. B.C. D.7.已知向量,向量,則的最大值,最小值分別是()A.,0 B.4,C.16,0 D.4,08.若函數(shù)(且)的圖像經(jīng)過定點P,則點P的坐標是()A. B.C. D.9.已知函數(shù)是定義在R上的偶函數(shù),且,當時,,則在區(qū)間上零點的個數(shù)為()A.2 B.3C.4 D.510.函數(shù)的零點所在區(qū)間是()A.(0,1) B.(1,2)C.(2,3) D.(3,+∞)二、填空題:本大題共6小題,每小題5分,共30分。11.若“”是“”的必要條件,則的取值范圍是________12.已知甲運動員的投籃命中率為0.7,乙運動員的投籃命中率為0.8,若甲、乙各投籃一次,則恰有一人命中的概率是___________13.函數(shù)的定義域為_____________14.已知角的終邊上一點P與點關(guān)于y軸對稱,角的終邊上一點Q與點A關(guān)于原點O中心對稱,則______15.函數(shù)的定義域是________.16.在四邊形ABCD中,若,且,則的面積為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.過點的直線被兩平行直線與所截線段的中點恰在直線上,求直線的方程18.如圖,已知,分別是正方體的棱,的中點.求證:平面平面.19.在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中且.設(shè)()若,,,求方程在區(qū)間內(nèi)的解集()若函數(shù)滿足:圖象關(guān)于點對稱,在處取得最小值,試確定、和應滿足的與之等價的條件20.如圖,幾何體EF-ABCD中,四邊形CDEF是正方形,四邊形ABCD為直角梯形,AB∥CD,AD⊥DC,△ACB是腰長為2的等腰直角三角形,平面CDEF⊥平面ABCD(1)求證:BC⊥AF;(2)求幾何體EF-ABCD的體積21.已知函數(shù),.(1)對任意的,恒成立,求實數(shù)k的取值范圍;(2)設(shè),證明:有且只有一個零點,且.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由條件根據(jù)兩個向量的加減法的法則,以及其幾何意義,可得,,然后轉(zhuǎn)化求解即可【詳解】可得,,兩式平方相加可得故選:2、B【解析】結(jié)合函數(shù)的單調(diào)性以及零點的存在性定理求得正確答案.【詳解】在上遞減,所以,在上遞增,所以,是定義在上的減函數(shù),,所以函數(shù)的零點在區(qū)間.故選:B3、C【解析】由可求得,然后將經(jīng)三角變換后用表示,于是可得所求【詳解】∵,∴,解得或∵,∴∴故選C【點睛】對于給值求值的問題,解答時注意將條件和所求值的式子進行適當?shù)幕啠缓蠛侠淼剡\用條件達到求解的目的,解題的關(guān)鍵進行三角恒等變換,考查變換轉(zhuǎn)化能力和運算能力4、D【解析】因為三棱柱A1B1C1-ABC中,側(cè)棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中點,所以對于A,AC與AB夾角為60°,即兩直線不垂直,所以AC不可能垂直于平面ABB1A1;故A錯誤;對于B,CC1與B1E都在平面CC1BB1中不平行,故相交;所以B錯誤;對于C,A1C1,B1E是異面直線;故C錯誤;對于D,因為幾何體是三棱柱,并且側(cè)棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中點,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故選D.5、B【解析】由得,再將代數(shù)式與相乘,利用基本不等式可求出的最小值【詳解】,所以,,則,所以,,當且僅當,即當時,等號成立,因此,的最小值為,故選【點睛】本題考查利用基本不等式求最值,對代數(shù)式進行合理配湊,是解決本題的關(guān)鍵,屬于中等題6、B【解析】利用捆綁法求出相鄰的概率即可求解.【詳解】四名學生按任意次序站成一排共有,相鄰的站法有,相鄰的的概率,故不相鄰的概率是.故選:B【點睛】本題考查了排列數(shù)以及捆綁法在排列中的應用,同時考查了古典概型的概率計算公式.7、D【解析】利用向量的坐標運算得到|2用θ的三角函數(shù)表示化簡求最值【詳解】解:向量,向量,則2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分別是:16,0;所以|2的最大值,最小值分別是4,0;故選:D【點睛】本題考查了向量的坐標運算以及三角函數(shù)解析式的化簡;利用了兩角差的正弦公式以及正弦函數(shù)的有界性8、B【解析】由函數(shù)圖像的平移變換或根據(jù)可得.【詳解】因為,所以當,即時,函數(shù)值為定值0,所以點P坐標為.另解:因為可以由向右平移一個單位長度后,再向下平移1個單位長度得到,由過定點,所以過定點.故選:B9、C【解析】根據(jù)函數(shù)的周期性、偶函數(shù)的性質(zhì),結(jié)合零點的定義進行求解即可.【詳解】因為,所以函數(shù)的周期為,當時,,即,因為函數(shù)是偶函數(shù)且周期為,所以有,所以在區(qū)間上零點的個數(shù)為,故選:C10、B【解析】計算出,并判斷符號,由零點存在性定理可得答案.【詳解】因為,,所以根據(jù)零點存在性定理可知函數(shù)的零點所在區(qū)間是,故選:B【點睛】本題考查了利用零點存在性定理判斷函數(shù)的零點所在區(qū)間,解題方法是計算區(qū)間端點的函數(shù)值并判斷符號,如果異號,說明區(qū)間內(nèi)由零點,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)題意解得:,得出,由此可得出實數(shù)的取值范圍.【詳解】根據(jù)題意解得:,由于“”是“”必要條件,則,.因此,實數(shù)的取值范圍是:.故答案為:.12、38##【解析】利用相互獨立事件概率乘法公式及互斥事件概率計算公式即求.【詳解】∵甲運動員的投籃命中率為0.7,乙運動員的投籃命中率為0.8,∴甲、乙各投籃一次,則恰有一人命中的概率是.故答案為:0.38.13、【解析】令解得答案即可.【詳解】令.故答案為:.14、0【解析】根據(jù)對稱,求出P、Q坐標,根據(jù)三角函數(shù)定義求出﹒【詳解】解:角終邊上一點與點關(guān)于軸對稱,角的終邊上一點與點關(guān)于原點中心對稱,由三角函數(shù)的定義可知,﹒故答案為:015、【解析】利用已知條件可得出關(guān)于的不等式組,由此可解得函數(shù)的定義域.【詳解】對于函數(shù),有,解得.因此,函數(shù)的定義域為.故答案:.16、【解析】由向量的加減運算可得四邊形為平行四邊形,再由條件可得四邊形為邊長為4的菱形,由三角形的面積公式計算可得所求值【詳解】在四邊形中,,即為,即,可得四邊形為平行四邊形,又,可得四邊形為邊長為4的菱形,則的面積為正的面積,即為,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】先設(shè)出線段的中點為,再根據(jù)已知求出的值,即得點M的坐標,再寫出直線l的方程.【詳解】設(shè)線段的中點為,因為點到與的距離相等,故,則點直線方程為,即.【點睛】(1)本題主要考查直線方程的求法,考查直線的位置關(guān)系和點到直線的距離,意在考查學生對這些知識的掌握水平和分析推理能力.(2)點到直線的距離.18、見解析【解析】取的中點,連接、,則,進一步得到四邊形為平行四邊形,同理得到四邊形為平行四邊形,結(jié)合線面平行的判定即可得到結(jié)果.【詳解】證明:取的中點,連接、.因為、分別為、的中點,.四邊形為平行四邊形..、分別為、的中點,∴,∴四邊形為平行四邊形,∴,∴.∵平面,平面,平面又,平面平面.【點睛】本題主要考查面面平行的判定,屬于基礎(chǔ)題型.19、(1)解集為;(2)見解析.【解析】分析:()由平面向量數(shù)量積公式、結(jié)合輔助角公式可得,令,從而可得結(jié)果;()“圖象關(guān)于點對稱,且在處取得最小值”.因此,根據(jù)三角函數(shù)的圖象特征可以知道,,故有,∴,,當且僅當,時,的圖象關(guān)于點對稱;此時,,對討論兩種情況可得使得函數(shù)滿足“圖象關(guān)于點對稱,且在處取得最小值的充要條件”是“,時,,;或當時,,”.詳解:()根據(jù)題意,當,,時,,,則有或,即或,又因為,故在內(nèi)解集為()解:因為,設(shè)周期因為函數(shù)須滿足“圖象關(guān)于點對稱,且在處取得最小值”因此,根據(jù)三角函數(shù)的圖象特征可以知道,,故有,∴,,又因為,形如的函數(shù)的圖象的對稱中心都是的零點,故需滿足,而當,時,因為,;所以當且僅當,時,的圖象關(guān)于點對稱;此時,,∴,(i)當,時,,進一步要使處取得最小值,則有,∴,故,又,則有,,因此,由可得,(ii)當時,,進一步要使處取得最小值,則有;又,則有,因此,由,可得,綜上,使得函數(shù)滿足“圖象關(guān)于點對稱,且在處取得最小值的充要條件”是“,時,,;或當時,,”點睛:本題主要考查公式三角函數(shù)的圖像和性質(zhì)以及輔助角公式的應用,屬于難題.利用該公式()可以求出:①的周期;②單調(diào)區(qū)間(利用正弦函數(shù)的單調(diào)區(qū)間可通過解不等式求得);③值域();④對稱軸及對稱中心(由可得對稱軸方程,由可得對稱中心橫坐標.20、(1)詳見解析;(2).【解析】(1)推導出FC⊥CD,F(xiàn)C⊥BC,AC⊥BC,由此BC⊥平面ACF,從而BC⊥AF(2)推導出AC=BC=2,AB4,從而AD=BCsin∠ABC=22,由V幾何體EF﹣ABCD=V幾何體A﹣CDEF+V幾何體F﹣ACB,能求出幾何體EF﹣ABCD的體積【詳解】(1)因為平面CDEF⊥平面ABCD,平面CDEF∩平面ABCD=CD,又四邊形CDEF是正方形,所以FC⊥CD,F(xiàn)C?平面CDEF,所以FC⊥平面ABCD,所以FC⊥BC因為△ACB是腰長為2的等腰直角三角形,所以AC⊥BC又AC∩CF=C,所以BC⊥平面ACF所以BC⊥AF(2)因為△ABC是腰長為2的等腰直角三角形,所以AC=BC=2,AB==4,所以AD=BCsin∠ABC=2=2,CD=AB=BCcos∠ABC=4-2cos45°=2,∴DE=EF=CF=2,由勾股定理得AE==2,因為DE⊥平面ABCD,所以DE⊥AD又AD⊥DC,DE∩DC=D,所以AD⊥平面CDEF所以V幾何體EF-ABCD=V幾何體A-CDEF+V幾何體F-ACB==+==【點睛】本題考查線線垂直的證明,考查幾何體的體積的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題21、(1);(2)證明見解析.【解析】(1)利用的單調(diào)性以及對數(shù)函數(shù)的單調(diào)性,即可求出的范圍(2)對進行分類討論,分為:和,利用零點存在定理和數(shù)形結(jié)合進行分析,即可求解【詳解】解:(1)因為是增函數(shù),是減函數(shù),所以在上單調(diào)遞增.所以的最小值為,所以,解得,所以實數(shù)k的取值范圍是.(2)函數(shù)的圖象在上連續(xù)不斷.①當時,因為與在上單調(diào)遞增,所以在上單調(diào)遞增.因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人與公司租賃合同標準文本2024年版一
- 2025年度旅游汽車租賃及旅游紀念品銷售合同3篇
- 個人網(wǎng)絡(luò)營銷策略制定合同(2024年)
- 2024離婚合同不執(zhí)行起訴狀案例
- 二零二五版民辦學校校長任期家長溝通協(xié)作合同4篇
- 二零二五版?zhèn)€人對文化傳承產(chǎn)業(yè)借款合同示范3篇
- 二零二五年度住宅小區(qū)車位代理租賃及管理服務合同4篇
- 2025年度茶藝培訓與茶藝館投資合作合同范本4篇
- 2025年度船舶航行安全保障體系設(shè)計與實施合同2篇
- 專屬房地產(chǎn)項目代建合作合同(2024版)版B版
- 保險反洗錢培訓
- 普通高中生物新課程標準
- 茉莉花-附指法鋼琴譜五線譜
- 結(jié)婚函調(diào)報告表
- SYT 6968-2021 油氣輸送管道工程水平定向鉆穿越設(shè)計規(guī)范-PDF解密
- 冷庫制冷負荷計算表
- 肩袖損傷護理查房
- 設(shè)備運維管理安全規(guī)范標準
- 辦文辦會辦事實務課件
- 大學宿舍人際關(guān)系
- 2023光明小升初(語文)試卷
評論
0/150
提交評論