2025屆貴州省畢節(jié)市數(shù)學高三上期末考試試題含解析_第1頁
2025屆貴州省畢節(jié)市數(shù)學高三上期末考試試題含解析_第2頁
2025屆貴州省畢節(jié)市數(shù)學高三上期末考試試題含解析_第3頁
2025屆貴州省畢節(jié)市數(shù)學高三上期末考試試題含解析_第4頁
2025屆貴州省畢節(jié)市數(shù)學高三上期末考試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆貴州省畢節(jié)市數(shù)學高三上期末考試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點成中心對稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點成中心對稱2.為了貫徹落實黨中央精準扶貧決策,某市將其低收入家庭的基本情況經(jīng)過統(tǒng)計繪制如圖,其中各項統(tǒng)計不重復.若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A.該市總有15000戶低收入家庭B.在該市從業(yè)人員中,低收入家庭共有1800戶C.在該市無業(yè)人員中,低收入家庭有4350戶D.在該市大于18歲在讀學生中,低收入家庭有800戶3.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結(jié)論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值4.在邊長為1的等邊三角形中,點E是中點,點F是中點,則()A. B. C. D.5.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.6.函數(shù)的部分圖象如圖所示,則的單調(diào)遞增區(qū)間為()A. B.C. D.7.已知等差數(shù)列的前n項和為,且,則()A.4 B.8 C.16 D.28.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.9.若復數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.10.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關(guān)關(guān)系,統(tǒng)計該店2017年每周六的銷售量及當天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關(guān)關(guān)系為()A.正相關(guān),相關(guān)系數(shù)的值為B.負相關(guān),相關(guān)系數(shù)的值為C.負相關(guān),相關(guān)系數(shù)的值為D.正相關(guān),相關(guān)負數(shù)的值為11.已知函,,則的最小值為()A. B.1 C.0 D.12.閱讀下面的程序框圖,運行相應的程序,程序運行輸出的結(jié)果是()A.1.1 B.1 C.2.9 D.2.8二、填空題:本題共4小題,每小題5分,共20分。13.若,則__________.14.若變量,滿足約束條件,則的最大值為__________.15.近年來,新能源汽車技術(shù)不斷推陳出新,新產(chǎn)品不斷涌現(xiàn),在汽車市場上影響力不斷增大.動力蓄電池技術(shù)作為新能源汽車的核心技術(shù),它的不斷成熟也是推動新能源汽車發(fā)展的主要動力.假定現(xiàn)在市售的某款新能源汽車上,車載動力蓄電池充放電循環(huán)次數(shù)達到2000次的概率為85%,充放電循環(huán)次數(shù)達到2500次的概率為35%.若某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電,那么他的車能夠充電2500次的概率為______.16.在直角三角形中,為直角,,點在線段上,且,若,則的正切值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某企業(yè)對設備進行升級改造,現(xiàn)從設備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值,該項質(zhì)量指標值落在區(qū)間內(nèi)的產(chǎn)品視為合格品,否則視為不合格品,如圖是設備改造前樣本的頻率分布直方圖,下表是設備改造后樣本的頻數(shù)分布表.圖:設備改造前樣本的頻率分布直方圖表:設備改造后樣本的頻率分布表質(zhì)量指標值頻數(shù)2184814162(1)求圖中實數(shù)的值;(2)企業(yè)將不合格品全部銷毀后,對合格品進行等級細分,質(zhì)量指標值落在區(qū)間內(nèi)的定為一等品,每件售價240元;質(zhì)量指標值落在區(qū)間或內(nèi)的定為二等品,每件售價180元;其他的合格品定為三等品,每件售價120元,根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應等級產(chǎn)品的概率.若有一名顧客隨機購買兩件產(chǎn)品支付的費用為(單位:元),求的分布列和數(shù)學期望.18.(12分)在中,角、、所對的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.19.(12分)已知,函數(shù).(1)若函數(shù)在上為減函數(shù),求實數(shù)的取值范圍;(2)求證:對上的任意兩個實數(shù),,總有成立.20.(12分)已知數(shù)列,,數(shù)列滿足,n.(1)若,,求數(shù)列的前2n項和;(2)若數(shù)列為等差數(shù)列,且對任意n,恒成立.①當數(shù)列為等差數(shù)列時,求證:數(shù)列,的公差相等;②數(shù)列能否為等比數(shù)列?若能,請寫出所有滿足條件的數(shù)列;若不能,請說明理由.21.(12分)在直角坐標系中,是過定點且傾斜角為的直線;在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為.(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標方程;(2)若曲線與直線相交于不同的兩點,求的取值范圍.22.(10分)在直角坐標系x0y中,把曲線α為參數(shù))上每個點的橫坐標變?yōu)樵瓉淼谋叮v坐標不變,得到曲線以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程(1)寫出的普通方程和的直角坐標方程;(2)設點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點的橫坐標為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當時,,即函數(shù)的一個對稱中心為,即函數(shù)的圖象關(guān)于點成中心對稱.故選B.【點睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運算與求解能力,屬于基礎題.2、D【解析】

根據(jù)給出的統(tǒng)計圖表,對選項進行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業(yè)人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無業(yè)人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學生中,低收入家庭有15000×4%=600(戶),D錯誤.故選:D.【點睛】本題主要考查對統(tǒng)計圖表的認識和分析,這類題要認真分析圖表的內(nèi)容,讀懂圖表反映出的信息是解題的關(guān)鍵,屬于基礎題.3、B【解析】

根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.4、C【解析】

根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計算,可得結(jié)果.【詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【點睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細心觀察,屬基礎題.5、C【解析】

先求導函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對導函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復雜的三角函數(shù)含自變量的代數(shù)式整體當作一個角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.6、D【解析】

由圖象可以求出周期,得到,根據(jù)圖象過點可求,根據(jù)正弦型函數(shù)的性質(zhì)求出單調(diào)增區(qū)間即可.【詳解】由圖象知,所以,,又圖象過點,所以,故可取,所以令,解得所以函數(shù)的單調(diào)遞增區(qū)間為故選:.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),利用“五點法”求函數(shù)解析式,屬于中檔題.7、A【解析】

利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【詳解】.故選:.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計算,難度容易.8、A【解析】

設平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運算律可求得的值,即為所求.【詳解】設平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運算性質(zhì)的應用,考查計算能力,屬于中等題.9、A【解析】

由得,然后分子分母同時乘以分母的共軛復數(shù)可得復數(shù),從而可得的虛部.【詳解】因為,所以,所以復數(shù)的虛部為.故選A.【點睛】本題考查了復數(shù)的除法運算和復數(shù)的概念,屬于基礎題.復數(shù)除法運算的方法是分子分母同時乘以分母的共軛復數(shù),轉(zhuǎn)化為乘法運算.10、C【解析】

根據(jù)正負相關(guān)的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負相關(guān).相關(guān)系數(shù)為負.故選:C.【點睛】本題考查變量的相關(guān)關(guān)系,考查正相關(guān)和負相關(guān)的區(qū)別.掌握正負相關(guān)的定義是解題基礎.11、B【解析】

,利用整體換元法求最小值.【詳解】由已知,又,,故當,即時,.故選:B.【點睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應用,是一道中檔題.12、C【解析】

根據(jù)程序框圖的模擬過程,寫出每執(zhí)行一次的運行結(jié)果,屬于基礎題.【詳解】初始值,第一次循環(huán):,;第二次循環(huán):,;第三次循環(huán):,;第四次循環(huán):,;第五次循環(huán):,;第六次循環(huán):,;第七次循環(huán):,;第九次循環(huán):,;第十次循環(huán):,;所以輸出.故選:C【點睛】本題考查了循環(huán)結(jié)構(gòu)的程序框圖的讀取以及運行結(jié)果,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知利用兩角差的正弦函數(shù)公式可得,兩邊平方,由同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式即可計算得解.【詳解】,得,在等式兩邊平方得,解得.故答案為:.【點睛】本題主要考查了兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.14、【解析】

根據(jù)約束條件可以畫出可行域,從而將問題轉(zhuǎn)化為直線在軸截距最大的問題的求解,通過數(shù)形結(jié)合的方式可確定過時,取最大值,代入可求得結(jié)果.【詳解】由約束條件可得可行域如下圖陰影部分所示:將化為,則最大時,直線在軸截距最大;由直線平移可知,當過時,在軸截距最大,由得:,.故答案為:.【點睛】本題考查線性規(guī)劃中最值問題的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為直線在軸截距的最值的求解問題,通過數(shù)形結(jié)合的方式可求得結(jié)果.15、【解析】

記“某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:,由條件概率公式即得解.【詳解】記“某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:故答案為:【點睛】本題考查了條件概率的應用,考查了學生概念理解,數(shù)學應用,數(shù)學運算的能力,屬于基礎題.16、3【解析】

在直角三角形中設,,,利用兩角差的正切公式求解.【詳解】設,,則,故.故答案為:3【點睛】此題考查在直角三角形中求角的正切值,關(guān)鍵在于合理構(gòu)造角的和差關(guān)系,其本質(zhì)是利用兩角差的正切公式求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】

(1)由頻率分布直方圖中所有頻率(小矩形面積)之和為1可計算出值;(2)由頻數(shù)分布表知一等品、二等品、三等品的概率分別為.,選2件產(chǎn)品,支付的費用的所有取值為240,300,360,420,480,由相互獨立事件的概率公式分別計算出概率,得概率分布列,由公式計算出期望.【詳解】解:(1)據(jù)題意,得所以(2)據(jù)表1分析知,從所有產(chǎn)品中隨機抽一件是一等品、二等品、三等品的概率分別為.隨機變量的所有取值為240,300,360,420,480.隨機變量的分布列為240300360420480所以(元)【點睛】本題考查頻率分布直方圖,頻數(shù)分布表,考查隨機變量的概率分布列和數(shù)學期望,解題時掌握性質(zhì):頻率分布直方圖中所有頻率和為1.本題考查學生的數(shù)據(jù)處理能力,屬于中檔題.18、(1);(2).【解析】

(1)由角的度數(shù)成等差數(shù)列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以當,即時,.【方法點睛】解三角形問題基本思想方法:從條件出發(fā),利用正弦定理(或余弦定理)進行代換、轉(zhuǎn)化.逐步化為純粹的邊與邊或角與角的關(guān)系,即考慮如下兩條途徑:①統(tǒng)一成角進行判斷,常用正弦定理及三角恒等變換;②統(tǒng)一成邊進行判斷,常用余弦定理、面積公式等.19、(1)(2)見解析【解析】

(1)求出函數(shù)的導函數(shù),依題意可得在上恒成立,參變分離得在上恒成立.設,求出即可得到參數(shù)的取值范圍;(2)不妨設,,,利用導數(shù)說明函數(shù)在上是減函數(shù),即可得證;【詳解】解:(1)∵∴,且函數(shù)在上為減函數(shù),即在上恒成立,∴在上恒成立.設,∵函數(shù)在上單調(diào)遞增,∴,∴,∴實數(shù)的取值范圍為.(2)不妨設,,,則,∴.∵,∴,又,令,∴,∴在上為減函數(shù),∴,∴,即,∴在上是減函數(shù),∴,即,∴,∴當時,.∵,∴.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性、極值與最值,利用導數(shù)證明不等式,考查了推理能力與計算能力,屬于難題.20、(1)(2)①見解析②數(shù)列不能為等比數(shù)列,見解析【解析】

(1)根據(jù)數(shù)列通項公式的特點,奇數(shù)項為等差數(shù)列,偶數(shù)項為等比數(shù)列,選用分組求和的方法進行求解;(2)①設數(shù)列的公差為,數(shù)列的公差為,當n為奇數(shù)時,得出;當n為偶數(shù)時,得出,從而可證數(shù)列,的公差相等;②利用反證法,先假設可以為等比數(shù)列,結(jié)合題意得出矛盾,進而得出數(shù)列不能為等比數(shù)列.【詳解】(1)因為,,所以,且,由題意可知,數(shù)列是以1為首項,2為公差的等差數(shù)列,數(shù)列是首項和公比均為4的等比數(shù)列,所以;(2)①證明:設數(shù)列的公差為,數(shù)列的公差為,當n為奇數(shù)時,,若,則當時,,即,與題意不符,所以,當n為偶數(shù)時,,,若,則當時,,即,與題意不符,所以,綜上,,原命題得證;②假設可以為等比數(shù)列,設公比為q,因為,所以,所以,,因為當時,,所以當n為偶數(shù),且時,,即當n為偶數(shù),且時,不成立,與題意矛盾,所以數(shù)列不能為等比數(shù)列.【點睛】本題主要考查數(shù)列的求和及數(shù)列的綜合,數(shù)列求和時一般是結(jié)合通項公式的特征選取合適的求和方法,數(shù)列綜合題要回歸基本量,充分挖掘題目已知信息,細思細算,本題綜合性較強,難度較大,側(cè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論