版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣西欽州市靈山縣數(shù)學高一上期末學業(yè)質(zhì)量監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知一幾何體的三視圖,則它的體積為A. B.C. D.2.已知函數(shù)的定義域為,集合,若中的最小元素為2,則實數(shù)的取值范圍是:A. B.C. D.3.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.8π B.16πC. D.4.已知點在第二象限,則角的終邊在()A.第一象限 B.第二象限C.第三象限 D.第四象限5.的圖像是端點為且分別過和兩點的兩條射線,如圖所示,則的解集為A.B.C.D.6.已知,則()A.-3 B.-1C.1 D.37.已知,且,則的最小值為()A.3 B.4C.6 D.98.函數(shù)的一個零點是()A. B.C. D.9.設a=,b=,c=,則a,b,c的大小關系是()A. B.C. D.10.已知集合,集合,則圖中陰影部分表示的集合為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)的最大值與最小值之差為,則______12.已知是第四象限角且,則______________.13.如果方程x2+(m-1)x+m2-2=0的兩個實根一個小于-1,另一個大于1,那么實數(shù)m的取值范圍是________14.已知角α∈(-,0),cosα=,則tanα=________.15.設是以2為周期的奇函數(shù),且,若,則的值等于___16.在平面直角坐標系xOy中,已知圓有且僅有三個點到直線l:的距離為1,則實數(shù)c的取值集合是______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,正方體的棱長為,連接,,,,,,得到一個三棱錐.求:(1)三棱錐的表面積;(2)三棱錐的體積18.已知為第三象限角,且.(1)化簡;(2)若,求的值.19.已知二次函數(shù)f(x)滿足:f(0)=f(4)=4,且該函數(shù)的最小值為1(1)求此二次函數(shù)f(x)的解析式;(2)若函數(shù)f(x)的定義域為A=m,n(其中0<m<n),問是否存在這樣的兩個實數(shù)m,n,使得函數(shù)f(x)的值域也為A?若存在,求出m,n(3)若對于任意x1∈0,3,總存在x2∈1,220.設全集,集合,,.(1)若,求的值;(2)若,求實數(shù)的取值范圍.21.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的圖象如圖所示(1)求函數(shù)f(x)的解析式及其對稱軸方程(2)求函數(shù)f(x)在區(qū)間[﹣,﹣]上的最大值和最小值,并指出取得最值時的x的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】所求體積,故選C.2、C【解析】本題首先可以求出集合以及集合中所包含的元素,然后通過交集的相關性質(zhì)以及中的最小元素為2即可列出不等式組,最后求出實數(shù)的取值范圍【詳解】函數(shù),,或者,所以集合,,,,所以集合,因為中的最小元素為2,所以,解得,故選C【點睛】本題考查了集合的相關性質(zhì),主要考查了交集的相關性質(zhì)、函數(shù)的定義域、帶絕對值的不等式的求法,考查了推理能力與計算能力,考查了化歸與轉化思想,提升了學生的邏輯思維,是中檔題3、A【解析】由三視圖還原直觀圖得到幾何體為高為4,底面半徑為2圓柱體的一半,即可求出體積.【詳解】由三視圖知:幾何體直觀圖為下圖圓柱體:高為h=4,底面半徑r=2圓柱體的一半,∴,故選:A4、C【解析】利用任意角的三角函數(shù)的定義,三角函數(shù)在各個象限中的負號,求得角α所在的象限【詳解】解:∵點P(sinα,tanα)在第二象限,∴sinα<0,tanα>0,若角α頂點為坐標原點,始邊為x軸的非負半軸,則α的終邊落在第三象限,故選:C5、D【解析】作出g(x)=圖象,它與f(x)的圖象交點為和,由圖象可得6、D【解析】利用同角三角函數(shù)基本關系式中的技巧弦化切求解.【詳解】.故選:D【點睛】本題考查了同角三角函數(shù)基本關系中的弦化切技巧,屬于容易題.7、A【解析】將變形為,再將變形為,整理后利用基本不等式可求最小值.【詳解】因為,故,故,當且僅當時等號成立,故的最小值為3.故選:A.【點睛】方法點睛:應用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結構.求最值時要關注取等條件的驗證.8、B【解析】根據(jù)正弦型函數(shù)的性質(zhì),函數(shù)的零點,即時的值,解三角方程,即可求出滿足條件的的值【詳解】解:令函數(shù),則,則,當時,.故選:B9、C【解析】根據(jù)指數(shù)和冪函數(shù)的單調(diào)性比較大小即可.【詳解】因為在上單調(diào)遞增,在上單調(diào)遞減所以,故.故選:C10、B【解析】由陰影部分表示的集合為,然后根據(jù)集合交集的概念即可求解.【詳解】因為陰影部分表示的集合為由于.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、或.【解析】根據(jù)冪函數(shù)的性質(zhì),結合題意,分類討論,利用單調(diào)性列出方程,即可求解.【詳解】由題意,函數(shù),當時,函數(shù)在上為單調(diào)遞增函數(shù),可得,解得;當時,顯然不成立;當時,函數(shù)在上為單調(diào)遞減函數(shù),可得,解得,綜上可得,或.故答案為:或.12、【解析】直接由平方關系求解即可.【詳解】由是第四象限角,可得.故答案為:.13、(0,1)【解析】結合二次函數(shù)的性質(zhì)得得到,在-1和1處的函數(shù)值均小于0即可.【詳解】結合二次函數(shù)的性質(zhì)得得到,在-1和1處的函數(shù)值均小于0即可,實數(shù)m滿足不等式組解得0<m<1.故答案為(0,1)【點睛】這個題目考查了二次函數(shù)根的分布的問題,結合二次函數(shù)的圖像的性質(zhì)即可得到結果,題型較為基礎.14、【解析】利用同角三角函數(shù)的平方關系和商數(shù)關系,即得解【詳解】∵α∈(-,0),cosα=,∴sinα=-=-,∴tanα==-.故答案為:15、【解析】先利用求得的值,再依據(jù)題給條件用來表示,即可求得的值【詳解】∵,∴,又∵是以2為周期的奇函數(shù),∴故答案為:16、【解析】因為圓心到直線的距離為,所以由題意得考點:點到直線距離三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)直接按照錐體表面積計算即可;(2)利用正方體體積減去三棱錐,,,的體積即可.【小問1詳解】∵是正方體,∴,∴三棱錐的表面積為【小問2詳解】三棱錐,,,是完全一樣的且正方體的體積為,故18、(1);(2)﹒【解析】(1)利用三角函數(shù)的誘導公式即可化簡;(2)根據(jù)求出sinα,=-cosα=即可求得﹒【小問1詳解】【小問2詳解】∵,∴,又為第三象限角,∴,∴19、(1)f(x)=34x2-3x+4(2)存在滿足條件的m,n,其中【解析】1設f(x)=a(x-2)2+1,由f(0)=4,求出a2分m<n≤2時,當m<2<n時,當2≤m<n時,三種情況討論,可得滿足條件的m,n,其中m=1,n=4;3若對于任意的x1∈0,3,總存在x解析:(1)依題意,可設f(x)=a(x-2)2+1,因f(0)=4,代入得(2)假設存在這樣的m,n,分類討論如下:當m<n≤2時,依題意,f(m)=n,f(n)=m,即3m+n=83,代入進一步得當m<2<n時,依題意m=f(2)=1,若n>3,f(n)=n,解得n=4或43若2<n≤3,n=f(1)=7當2≤m<n時,依題意,f(m)=m,f(n)=n,即34m2-3m+4=m,綜上:存在滿足條件的m,n,其中m=1,n=4.(3)依題意:2x由(1)可知,f(x1即2x2+整理得a>-2x22又y=-2x2+5x=-2(x-54)依題意:a>2點睛:本題重點考查了二次函數(shù)性質(zhì),運用待定系數(shù)法求得二次函數(shù)的解析式,在求二次函數(shù)的值域時注意分類討論,解出符合條件的結果,當遇到“任意的x1,總存在x220、(1)或;(2).【解析】(1)因為,故,從而或者,故或(舎)或.(2)計算得,故,又,所以的取值范圍是.解析:(1)∵,,,∴或,∴或或,經(jīng)驗知或.(2),,由,得,又及與集合中元素相異矛盾,所以的取值范圍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年甲乙雙方關于量子通訊網(wǎng)絡建設的施工合同
- 2024年版紅木家具交易協(xié)議細則版
- 會計2023個人工作計劃
- 高密度連接線路板項目商業(yè)計劃書
- 2018-2024年中國廣告行業(yè)市場發(fā)展現(xiàn)狀調(diào)研及投資趨勢前景分析報告
- 2022-2027年中國內(nèi)窺鏡行業(yè)市場運行態(tài)勢及投資戰(zhàn)略研究報告
- 車間主管個人工作計劃5篇
- 買賣合同模板集合5篇
- 網(wǎng)絡安全教育觀后感
- 工作計劃-文檔
- 2024年江蘇宿遷經(jīng)濟技術開發(fā)區(qū)城市管理輔助人員招聘筆試參考題庫附帶答案詳解
- 馬拉松賽事運營服務方案
- 陽光少年體驗營輔導員工作總結
- 國家能源集團考試試題
- 2024銷售業(yè)績深度總結報告
- 小學道德與法治教學工作總結3篇
- (高清版)DZT 0388-2021 礦區(qū)地下水監(jiān)測規(guī)范
- 建立旅游景區(qū)的全員服務意識
- 【新課標】小學道德與法治課程標準考試試卷
- 設備維修轉正述職報告
- 市技能大師工作室建設方案
評論
0/150
提交評論