2025屆上海市復(fù)旦附中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第1頁
2025屆上海市復(fù)旦附中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第2頁
2025屆上海市復(fù)旦附中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第3頁
2025屆上海市復(fù)旦附中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第4頁
2025屆上海市復(fù)旦附中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆上海市復(fù)旦附中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“圓”是中國文化的一個重要精神元素,在中式建筑中有著廣泛的運用,最具代表性的便是園林中的門洞.如圖,某園林中的圓弧形挪動高為2.5m,底面寬為1m,則該門洞的半徑為()A.1.2m B.1.3mC.1.4m D.1.5m2.如圖,、分別是橢圓的左頂點和上頂點,從橢圓上一點向軸作垂線,垂足為右焦點,且,點到右準(zhǔn)線的距離為,則橢圓方程為()A. B.C. D.3.曲線在處的切線的斜率為()A.-1 B.1C.2 D.34.已知,分別為雙曲線:的左,右焦點,以為直徑的圓與雙曲線的右支在第一象限交于點,直線與雙曲線的右支交于點,點恰好為線段的三等分點(靠近點),則雙曲線的離心率等于()A. B.C. D.5.已知,,若,則實數(shù)()A. B.C.2 D.6.已知橢圓:的離心率為,則實數(shù)()A. B.C. D.7.在空間直角坐標(biāo)系中,已知點A(1,1,2),B(-3,1,-2),則線段AB的中點坐標(biāo)是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)8.已知數(shù)列為遞增等比數(shù)列,,則數(shù)列的前2019項和()A. B.C. D.9.“”是“曲線為焦點在軸上的橢圓”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件10.若點是函數(shù)圖象上的動點(其中的自然對數(shù)的底數(shù)),則到直線的距離最小值為()A. B.C. D.11.已知向量為平面的法向量,點在內(nèi),點在外,則點到平面的距離為()A. B.C. D.12.函數(shù)的導(dǎo)數(shù)為()A.B.CD.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),分別是橢圓C:左、右焦點,點M為橢圓C上一點且在第一象限,若為等腰三角形,則M的坐標(biāo)為___________14.直線l交橢圓于A,B兩點,線段AB的中點為,直線是線段AB的垂直平分線,若,D為垂足,則D點的軌跡方程是______15.若函數(shù)在處有極值,則的值為___________.16.已知遞增數(shù)列共有2021項,且各項均不為零,,如果從中任取兩項,當(dāng)時,仍是數(shù)列中的項,則的范圍是________________,數(shù)列的所有項和________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標(biāo)系中,點,,(1)求直線BC的方程;(2)記的外接圓為圓M,若直線OC被圓M截得的弦長為4,求點C的坐標(biāo)18.(12分)函數(shù)(1)求在上的單調(diào)區(qū)間;(2)當(dāng)時,不等式恒成立,求實數(shù)a的取值范圍19.(12分)某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計得到如下數(shù)據(jù):x12345678y56.53122.7517.815.9514.51312.5根據(jù)以上數(shù)據(jù)繪制了散點圖觀察散點圖,兩個變量間關(guān)系考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量的關(guān)系進(jìn)行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,與x的相關(guān)系數(shù).(1)用反比例函數(shù)模型求y關(guān)于x的回歸方程;(2)用相關(guān)系數(shù)判斷上述兩個模型哪一個擬合效果更好(精確到0.001),并用其估計產(chǎn)量為10千件時每件產(chǎn)品非原料成本;(3)根據(jù)企業(yè)長期研究表明,非原料成本y服從正態(tài)分布,用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差s作為的估計值,若非原料成本y在之外,說明該成本異常,并稱落在之外的成本為異樣成本,此時需尋找出現(xiàn)異樣成本的原因.利用估計值判斷上述非原料成本數(shù)據(jù)是否需要尋找出現(xiàn)異樣成本的原因?參考數(shù)據(jù)(其中):0.340.1151.531845777.55593.0630.70513.9參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:,,相關(guān)系數(shù).20.(12分)已知是公比不為1的等比數(shù)列,,且為的等差中項.(1)求的公比;(2)求的通項公式及前n項和.21.(12分)已知數(shù)列滿足:(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前n項和為.若對恒成立.求正整數(shù)m的最大值22.(10分)設(shè)函數(shù)(1)若,求的單調(diào)區(qū)間和極值;(2)在(1)的條件下,證明:若存在零點,則在區(qū)間上僅有一個零點;(3)若存在,使得,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè)半徑為R,根據(jù)垂徑定理可以列方程求解即可.【詳解】設(shè)半徑為R,,解得,化簡得.故選:B.2、A【解析】設(shè)橢圓方程為,設(shè)該橢圓的焦距為,則,求出點的坐標(biāo),根據(jù)可得出,可得出,,結(jié)合已知條件求得的值,可得出、的值,即可得出橢圓的方程.【詳解】設(shè)橢圓方程為,設(shè)該橢圓的焦距為,則,由圖可知,點第一象限,將代入橢圓方程得,得,所以,點,易知點、,,,因為,則,得,可得,則,點到右準(zhǔn)線的距離為為,則,,因此,橢圓的方程為.故選:A.3、D【解析】先求解出導(dǎo)函數(shù),然后代入到導(dǎo)函數(shù)中,所求導(dǎo)數(shù)值即為切線斜率.【詳解】因為,所以,所以切線的斜率為.故選:D.4、C【解析】設(shè),,根據(jù)雙曲線的定義可得,,在中由勾股定理列方程可得,在中由勾股定理可得關(guān)于,的方程,再由離心率公式即可求解.【詳解】設(shè),則,由雙曲線的定義可得:,,因為點在以為直徑的圓上,所以,所以,即,解得:,在中,,,,由可得,即,所以雙曲線離心率為,故選:C.第II卷(非選擇題5、D【解析】根據(jù)給定條件利用空間向量平行的坐標(biāo)表示計算作答.【詳解】因,,又,則,解得,所以實數(shù).故選:D6、C【解析】根據(jù)題意,先求得的值,代入離心率公式,即可得答案.【詳解】因為,所以所以,解得.故選:C7、B【解析】利用中點坐標(biāo)公式直接求解【詳解】在空間直角坐標(biāo)系中,點,1,,,1,,則線段的中點坐標(biāo)是,,,1,故選:B.8、C【解析】根據(jù)數(shù)列為遞增的等比數(shù)列,,利用“”法求得,再代入等比數(shù)列的前n項和公式求解.【詳解】因為數(shù)列為遞增等比數(shù)列,所以,解得:,所以.故選:C【點睛】本題主要考查等比數(shù)列的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.9、C【解析】∵“”?“方程表示焦點在軸上的橢圓”,“方程表示焦點在軸上的橢圓”?“”,∴“”是“方程表示焦點在軸上的橢圓”的充要條件,故選C.10、A【解析】設(shè),,設(shè)與平行且與相切的直線與切于,由導(dǎo)數(shù)的幾何意義可求出點的坐標(biāo),則到直線的距離最小值為點到直線的距離,再求解即可.【詳解】解:設(shè),,設(shè)與平行且與相切的直線與切于所以所以則到直線的距離為,即到直線的距離最小值為,故選:A11、A【解析】先求出向量,再利用空間向量中點到平面的距離公式即可求解.【詳解】解:由題知,點在內(nèi),點在外,所以又向量為平面的法向量所以點到平面的距離為:故選:A.12、B【解析】由導(dǎo)數(shù)運算法則可求出.【詳解】,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先計算出,所以,利用余弦定理求出,即可求出,即得到M的橫坐標(biāo)為,代入橢圓C:求出.【詳解】橢圓C:,所以.因為M在橢圓上,.因為M在第一象限,故.為等腰三角形,則,所以,由余弦定理可得.過M作MA⊥x軸于A,則所以,即M的橫坐標(biāo)為.因為M為橢圓C:上一點且在第一象限,所以,解得:所以M的坐標(biāo)為.故答案為:14、【解析】設(shè)直線l的方程為,代入橢圓方程并化簡,然后根據(jù)M為線段AB的中點結(jié)合根與系數(shù)的關(guān)系得到k,t間的關(guān)系,進(jìn)而寫出線段AB的垂直平分線的直線方程,可以判斷它過定點E,再考慮直線l的斜率不存在的情況,根據(jù)題意可知,點D在以O(shè)E為直徑的圓上,最后求出點D的軌跡方程.【詳解】設(shè)直線l的方程為,代入橢圓方程并化簡得:,設(shè),則,解得.因為直線是線段AB的垂直平分線,故直線:,即:令,此時,,于是直線過定點當(dāng)直線l的斜率不存在時,,直線也過定點點D在以O(shè)E為直徑的圓上,則圓心為,半徑,所以點D軌跡方程為:15、2或6【解析】由解析式得到導(dǎo)函數(shù),結(jié)合是函數(shù)極值點,即可求的值.【詳解】由,得,因為函數(shù)在處有極值,所以,即,解得2或6.經(jīng)檢驗,2或6滿足題意.故答案為:2或6.16、①.②.1011【解析】根據(jù)題意得到,得到,,,,進(jìn)而得到,從而即可求得的值.【詳解】由題意,遞增數(shù)列共有項,各項均不為零,且,所以,所以的范圍是,因為時,仍是數(shù)列中的項,即,且上述的每一項均在數(shù)列中,所以,,,,即,所以,所以.故答案為:;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)延長CB交x軸于點N,根據(jù)給定條件求出即可計算作答.(2)利用待定系數(shù)法求出圓M的方程,再由給定弦長確定C點位置,推理計算得解.【小問1詳解】延長CB交x軸于點N,如圖,因,則,又,則有,又,于是得,則直線BC的傾斜角為120°,直線BC的斜率,因此,,即所以直線BC的方程為.【小問2詳解】依題意,設(shè)圓M的方程為,由(1)得:,解得,于是得圓M的方程為,即,圓心,半徑,因直線OC被圓M所截的弦長為4,則直線OC過圓心,其方程為,由解得,即,所以點C的坐標(biāo)是.18、(1)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為和(2)【解析】(1)求出,然后可得答案;(2)由條件可得,設(shè),則,然后利用導(dǎo)數(shù)可得在上單調(diào)遞增,,然后分、兩種情況討論求解即可.【小問1詳解】由題可得令,得;令,得,所以f(x)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為和【小問2詳解】由,得,即設(shè),則設(shè),則當(dāng)時,,,所以所以即在上單調(diào)遞增,則若,則,所以h(x)在上單調(diào)遞增所以h(x)≥h(0)=0恒成立,符合題意若a>2,則,必存在正實數(shù),滿足:當(dāng)時,,h(x)單調(diào)遞減,此時h(x)<h(0)=0,不符合題意綜上所述,a的取值范圍是19、(1)(2)反比例函數(shù)模型擬合效果更好,產(chǎn)量為10千件時每件產(chǎn)品的非原料成本約為11元,(3)見解析【解析】(1)令,則可轉(zhuǎn)化為,求出樣本中心,回歸方程的斜率,轉(zhuǎn)化求回歸方程即可,(2)求出與的相關(guān)系數(shù),通過比較,可得用反比例函數(shù)模型擬合效果更好,然后將代入回歸方程中可求結(jié)果(3)利用已知數(shù)據(jù)求出樣本標(biāo)準(zhǔn)差s,從而可得非原料成本y服從正態(tài)分布,再計算,然后各個數(shù)據(jù)是否在此范圍內(nèi),從而可得結(jié)論【小問1詳解】令,則可轉(zhuǎn)化為,因為,所以,所以,所以,所以y關(guān)于x的回歸方程為【小問2詳解】與的相關(guān)系數(shù)為因為,所以用反比例函數(shù)模型擬合效果更好,把代入回歸方程得(元),所以產(chǎn)量為10千件時每件產(chǎn)品的非原料成本約為11元【小問3詳解】因為,所以,因為樣本標(biāo)準(zhǔn)差為,所以,所以非原料成本y服從正態(tài)分布,所以因為在之外,所以需要此非原料成本數(shù)據(jù)尋找出現(xiàn)異樣成本的原因20、(1)(2),【解析】(1)設(shè)數(shù)列公比為,根據(jù)列出方程,即可求解;(2):由(1)得到,利用等比數(shù)列的求和公式,即可求解.【小問1詳解】解:設(shè)數(shù)列公比為,因為為的等差中項,可得,即,即,解得或(舍去),所以等比數(shù)列的公比為.【小問2詳解】解:由(1)知且,可得,所以.21、(1);(2)2021.【解析】(1)求出公比和首項即可.(2)利用錯位相減法,求出,再作差求出遞增,即可求解.【詳解】(1)因為數(shù)列滿足:,所以,設(shè)的公比為q,可得,又,即,解得,所以;(2),,,上面兩式相減可得,化簡可,因為,所以遞增,最小,且為所以,解得,則m的最大值為202122、(1)遞減區(qū)間是,單調(diào)遞增區(qū)間是,極小值(2)證明見解析(3)【解析】(1)對函數(shù)進(jìn)行求導(dǎo)通分化簡,求出解得,在列出與在區(qū)間上的表格,即可得到答案.(2)由(1)知,在區(qū)間上的最小值為,因為存在零點,所以,從而.在對進(jìn)行分類討論,再利用函數(shù)的單調(diào)性得出結(jié)論.(3)構(gòu)造函數(shù),在對進(jìn)行求導(dǎo),在對進(jìn)行分情況討論,即可得的得到答案.【小問1詳解】函數(shù)的定義域為,,由解得與在區(qū)間上的情況如下:–↘↗所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;在處取得極小值,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論