高中數(shù)學(xué)說課稿_第1頁
高中數(shù)學(xué)說課稿_第2頁
高中數(shù)學(xué)說課稿_第3頁
高中數(shù)學(xué)說課稿_第4頁
高中數(shù)學(xué)說課稿_第5頁
已閱讀5頁,還剩84頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

高中數(shù)學(xué)說課稿高中數(shù)學(xué)說課稿1一、平面向量的坐標(biāo)表示1、定義2、特殊向量的坐標(biāo)表示3、相等向量的坐標(biāo)也相等4、向量OA的坐標(biāo)表示二、平面向量的坐標(biāo)運算1、向量的坐標(biāo)運算法則2、向量AB的坐標(biāo)與點A、點B的坐標(biāo)的關(guān)系三、例題例1例2例3方案二:一、平面向量的坐標(biāo)表示1、定義2、特殊向量的坐標(biāo)表示3、相等向量的.坐標(biāo)也相等4、向量OA的坐標(biāo)表示二、平面向量的坐標(biāo)運算1、坐標(biāo)運算法則2、向量AB的坐標(biāo)與A、B的坐標(biāo)的關(guān)系三、例題例1例2例3教學(xué)環(huán)節(jié)流程安排教案的設(shè)計說明:1、設(shè)計初衷:本節(jié)課內(nèi)容難度不高,但知識點比較繁多,而且各知識點之間的銜接不夠緊湊,對初學(xué)者來說容易產(chǎn)生雜亂無章的感覺.教師作為教學(xué)活動的設(shè)計者,在教學(xué)設(shè)計中應(yīng)力求突出知識間的聯(lián)系,指引學(xué)生理清眾多的思緒,主動參與到思考、觀察、猜想、驗證、應(yīng)用的教學(xué)活動中去,從而順利地突破重、難點.2、呈現(xiàn)方式:根據(jù)教學(xué)大綱要求結(jié)合本節(jié)課具體的教學(xué)目標(biāo)和學(xué)生的認(rèn)知特點,我設(shè)計了"復(fù)習(xí)回顧--創(chuàng)設(shè)問題情境--合作探究和指導(dǎo)應(yīng)用--歸納小結(jié)--布置作業(yè)"五個教學(xué)環(huán)節(jié).3、新課程觀的體現(xiàn):本節(jié)課主要采用的是"引導(dǎo)發(fā)現(xiàn)、合作探究"的教學(xué)方法,以學(xué)生熟知的足球運動為情境引入新課,以問題為載體,以師生合作探究為主線,以思維訓(xùn)練為核心,以能力發(fā)展為目標(biāo),充分調(diào)動一切可利用的因素,激發(fā)學(xué)生的參與意識,使學(xué)生經(jīng)歷知識的形成、發(fā)展和應(yīng)用的過程,在和諧、愉悅的氛圍中獲取知識,掌握方法.整個教學(xué)中既突出了學(xué)生的主體地位,又發(fā)揮了教師的指導(dǎo)作用.4、可能出現(xiàn)的問題:探究式教學(xué)需要留給學(xué)生充足的時間和空間,為學(xué)生提供活動的機會,學(xué)生情況不同,反饋給教師的信息也不同,因而在時間和內(nèi)容上都不是固定的,需要教師在設(shè)計時富有一定的彈性,在實施時設(shè)計方案跟著學(xué)生轉(zhuǎn)變,具有一定的開放性和靈活性.高中數(shù)學(xué)說課稿2一、教材分析本節(jié)內(nèi)容是等差數(shù)列(第一課時)的內(nèi)容,屬于數(shù)與代數(shù)領(lǐng)域的知識。本節(jié)是數(shù)列課程的新授課,為后面等比數(shù)列以及數(shù)列求和的知識點作基礎(chǔ)。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它有著廣泛的實際應(yīng)用。等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。在數(shù)學(xué)思想的方面,數(shù)列在處理數(shù)與數(shù)之間的關(guān)系中,更多地培養(yǎng)了學(xué)生運用函數(shù)與函數(shù)關(guān)系的思想。二、教學(xué)目標(biāo)根據(jù)課程標(biāo)準(zhǔn)的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標(biāo)(1)在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想。(2)在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;以形象的實際例子作為學(xué)生理解與練習(xí)的模板,使學(xué)生在不斷實踐中鞏固學(xué)習(xí)到的知識;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。(3)在情感上:通過對等差數(shù)列在實際問題中的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。3、教學(xué)重點和難點根據(jù)課程標(biāo)準(zhǔn)的要求我確定本節(jié)課的教學(xué)重點為:①等差數(shù)列的概念。②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。三、教學(xué)方法分析:對于高中學(xué)生,知識經(jīng)驗比較貧乏,雖然他們的智力發(fā)展已到了形式運演階段,但并不具備教強的抽象思維能力和演繹推理能力,所以本堂課將從實際中的問題出發(fā),以學(xué)生日常生活中較易接觸的一些數(shù)學(xué)問題,籍此啟發(fā)學(xué)生對于數(shù)列知識點的理解。本節(jié)課大多采用啟發(fā)式、討論式的.教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,并學(xué)會將數(shù)學(xué)知識運用到實際問題的解決中。四、教學(xué)過程通過復(fù)習(xí)上節(jié)課數(shù)列的定義來引入幾個數(shù)列25.....68.....20,25.....2)18,15.5,13,10.5,8,4.53)48,53,58,63,68.....通過這3個數(shù)列,初步認(rèn)識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ)。由學(xué)生觀察第一個數(shù)列與第三個數(shù)列的特點,并與第二個做對比,引出等差數(shù)列的概念。(二)新課探究1、由引入自然的給出等差數(shù)列的概念:定義:如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):①“從第二項起”滿足條件;②公差d一定是由后項減前項所得;③每一項與它的前一項的差必須是同一個常數(shù);在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達式:an+1-an=d(n≥1)1......合概念的理解,引導(dǎo)學(xué)生講本不是等差數(shù)列的第二組數(shù)列修改成等差數(shù)列。并由觀察三組數(shù)列的不同特點,由此強調(diào):公差可以是正數(shù)、負(fù)數(shù),并再舉出特例數(shù)列1,1,1,1,1,1,1......說明公差也可以是0。2、第二個重點部分為等差數(shù)列的通項公式在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項,公差d,運用求數(shù)列通項公式的辦法------迭加法:整個過程通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點。若一等差數(shù)列{an}的首項是a1,公差是d,則據(jù)其定義可得:a2–a1=da3–a2=da4–a3=d……an–an-1=d將這(n-1)個等式左右兩邊分別相加,就可以得到an–a1=(n-1)d即an=a1+(n-1)d(1)當(dāng)n=1時,(1)也成立,所以對一切n∈N﹡,上面的公式都成立因此它就是等差數(shù)列{an}的通項公式。對照已歸納出的通項公式啟發(fā)學(xué)生想出將n-1個等式相加。證出通項公式。在這里通過運用迭加法這一數(shù)學(xué)思想,便于學(xué)生從概念理解的過程過渡到運用概念的過程。接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)_2,即an=2n-1以此來鞏固等差數(shù)列通項公式運用。(三)應(yīng)用舉例現(xiàn)實生活中,以學(xué)生較為熟悉的iphone手機的數(shù)據(jù)作為例子。觀察Iphone手機的發(fā)布時間,iphone第一代發(fā)布于20__年,第二代發(fā)布于20__年,第三代發(fā)布于20__年,第四代發(fā)布于20__年?,F(xiàn)在第六代發(fā)布于今年20__年。首先,讓學(xué)生觀察從04年到10年每兩代iphone發(fā)布的間隔時間,讓學(xué)生自行尋找規(guī)律,并在此基礎(chǔ)上讓學(xué)生估測第五代iphone的發(fā)布時間,并驗證第五代iphone發(fā)布于20__年。同時,再讓學(xué)生預(yù)測在未來,下一部iphone發(fā)布的時間,是學(xué)生體驗到將數(shù)學(xué)知識運用到實際中的方法與步驟。為了加深聯(lián)系,再給出了每代iphone的價格:iphone14299;iphone24800;iphone35299;iphone45988;iphone56300。在給出的數(shù)據(jù)上,將價格隨時間的變化以坐標(biāo)軸的形式作圖表示出來,讓學(xué)生觀察到雖然這些數(shù)據(jù)非等差,但是可以大致變?yōu)榈炔畹闹本€圖像,讓學(xué)生體會到“擬合數(shù)據(jù)”的思想。在此基礎(chǔ)上,讓學(xué)生進行練習(xí),預(yù)測14年如今iphone6的上市價格為6888元,并與學(xué)生通過數(shù)列進行推理的價格進行對比,讓學(xué)生對自己在實踐中解決問題的過程中找到一定的認(rèn)同感。五、歸納小結(jié)提問學(xué)生,總結(jié)這節(jié)課的收獲1、等差數(shù)列的概念及數(shù)學(xué)表達式,并強調(diào)關(guān)鍵字:從第二項開始,它的每一項與前一項之差都等于同一常數(shù)。2、等差數(shù)列的通項公式an=a1+(n-1)d3、將讓學(xué)生在實踐中了解,將數(shù)列知識點運用到實際中的方法。4、在課末提出啟發(fā)性問題,若是有人將每一部iphone都買入,那他一共花費了多少錢?借此引出了下一節(jié),等差數(shù)列求和的知識點。讓學(xué)生嘗試自行去思考這樣的問題。5、布置作業(yè)高中數(shù)學(xué)說課稿3【教學(xué)目標(biāo)】1.使學(xué)生掌握正弦函數(shù)圖象的對稱性及其代數(shù)表示形式,理解誘導(dǎo)公式(R)與(R)的幾何意義,體會正弦函數(shù)的對稱性。2.在探究過程中滲透由具體到抽象,由特殊到一般以及數(shù)形結(jié)合的思想方法,提高學(xué)生觀察、分析、抽象概括的能力。3.通過具體的探究活動,培養(yǎng)學(xué)生主動利用信息技術(shù)研究并解決數(shù)學(xué)問題的能力,增強學(xué)生之間合作與交流的意識?!窘虒W(xué)重點】正弦函數(shù)圖象的對稱性及其代數(shù)表示形式?!窘虒W(xué)難點】用等式表示正弦函數(shù)圖象關(guān)于直線對稱和關(guān)于點對稱。【教學(xué)方法】教師啟發(fā)引導(dǎo)與學(xué)生自主探究相結(jié)合?!窘虒W(xué)手段】計算機、圖形計算器(學(xué)生人手一臺)?!窘虒W(xué)過程】一、復(fù)習(xí)引入1.展示生活實例對稱在自然界中有著豐富多彩的顯現(xiàn),各種對稱圖案、對稱符號也都十分普遍(見下圖)。2.復(fù)習(xí)對稱概念初中我們已經(jīng)學(xué)習(xí)過軸對稱圖形和中心對稱圖形的有關(guān)概念:軸對稱圖形——將圖形沿一條直線折疊,直線兩側(cè)的部分能夠互相重合;中心對稱圖形——將圖形繞一個點旋轉(zhuǎn)180°,所得圖形與原圖形重合。3.作圖觀察請同學(xué)們用圖形計算器畫出正弦函數(shù)的圖象(見右圖),仔細(xì)觀察正弦曲線是否是對稱圖形?是軸對稱圖形還是中心對稱圖形?4.猜想圖形性質(zhì)經(jīng)過簡單交流后,能夠發(fā)現(xiàn)正弦曲線既是軸對稱圖形也是中心對稱圖形,并能夠猜想出一部分對稱軸和對稱中心。(教師點評并板書)如何檢驗猜想是否正確?我們知道,誘導(dǎo)公式(R),刻畫了正弦曲線關(guān)于原點對稱,而(R),刻畫了余弦曲線關(guān)于軸對稱。從這兩個特殊的例子中我們得到一些啟發(fā),如果我們能夠用代數(shù)式表示所發(fā)現(xiàn)的對稱性,就可以從代數(shù)上進行嚴(yán)格證明。今天我們利用圖形計算器來研究正弦函數(shù)圖象的對稱性。(板書課題)二、探究新知分為兩個階段,第一階段師生共同探討正弦曲線的軸對稱性質(zhì),第二階段學(xué)生自主探索正弦曲線的中心對稱性質(zhì)。(一)對于正弦曲線軸對稱性的研究第一階段,實例分析——對正弦曲線關(guān)于直線對稱的研究。1.直觀探索——利用圖形計算器的繪圖功能進行探索請同學(xué)們在同一坐標(biāo)系中畫出正弦曲線和直線的圖象,選擇恰當(dāng)窗口并充分利用畫圖功能對問題進行探索研究(見右圖),在直線兩側(cè)正弦函數(shù)值有什么變化規(guī)律?給學(xué)生一定的時間操作、觀察、歸納、交流,最后得出猜想:當(dāng)自變量在左右對稱取值時,正弦函數(shù)值相等。從直觀上得到的猜想,需要從數(shù)值上進一步精確檢驗。2.?dāng)?shù)值檢驗——利用圖形計算器的計算功能進行探索請同學(xué)們思考,對于上述猜想如何取值進行檢驗?zāi)??教師組織學(xué)生通過合作的方式,對稱地在左右自主選取適當(dāng)?shù)淖宰兞?,并計算函?shù)值,對結(jié)果進行列表比較歸納。同時為沒有思路的學(xué)生準(zhǔn)備參考表格如下:..............................給學(xué)生一定的時間進行思考、操作,根據(jù)情況進行指導(dǎo)并組織學(xué)生進行交流,然后請一組學(xué)生說明他們的研究過程。學(xué)生可以采用不同的數(shù)據(jù)采集方法,得到的結(jié)果如下列圖表(表格中函數(shù)值精確到0.001):..................—0.4160.0710.5400.87810.8780.5400.071—0.416......上述計算結(jié)果,初步檢驗了猜想,并可以把猜想用等式(R)表示。請同學(xué)們利用前面得到的數(shù)據(jù),用圖形計算器描點畫圖(見下圖),然后進行觀察比較,思考點P和P′在平面直角坐標(biāo)系中有怎樣的位置關(guān)系?根據(jù)畫圖結(jié)果,可以看出,點P和P′關(guān)于直線對稱。這樣,正弦曲線關(guān)于直線對稱,可以用等式(R)表示。這樣的計算是有限的,并受到精確度的影響,還需要對等式進行嚴(yán)格證明。3.嚴(yán)格證明——證明等式對任意R恒成立請同學(xué)們思考,證明等式的基本方法有哪些?所要證的等式左右兩端有何特征?有可能選用什么樣的公式?預(yù)案一:根據(jù)誘導(dǎo)公式,有。預(yù)案二:根據(jù)公式和,有。預(yù)案三:根據(jù)正弦函數(shù)的定義,在平面直角坐標(biāo)系中,無論取任何實數(shù),角和的終邊總是關(guān)于軸對稱(見右圖),他們的正弦值恒相等。這樣我們就證明了等式對任意R恒成立,也就證明了正弦曲線關(guān)于直線對稱。事實上,誘導(dǎo)公式也可以由等式推出,即這兩個等式是等價的因此,正弦曲線關(guān)于直線對稱,是誘導(dǎo)公式(R)的幾何意義。階段小結(jié):我們從幾何直觀獲得啟發(fā),又通過數(shù)據(jù)計算進一步檢驗,得出正弦曲線關(guān)于直線對稱可以用等式(R)表示,通過對這一等式的嚴(yán)格證明,證實了我們猜想的'正確性。上述等式與誘導(dǎo)公式(R)的等價性,使我們對這一誘導(dǎo)公式有了新的理解。第二階段,抽象概括——探索正弦曲線的其他對稱軸。師生、生生交流,步步深入。問題一:正弦曲線還有其他對稱軸嗎?有多少條對稱軸?對稱軸方程形式有什么特點?可以發(fā)現(xiàn),經(jīng)過圖象最大值點和最小值點且垂直于軸的直線都是正弦曲線的對稱軸(教師利用課件演示),則對稱軸方程的一般形式為:(Z)。問題二:能用等式表示"正弦曲線關(guān)于直線(Z)對稱"嗎?根據(jù)前面的研究,上述對稱可以用等式(Z,R)表示。請學(xué)生證明上述等式,然后組織學(xué)生交流證明思路。證明預(yù)案:。(二)對于正弦曲線中心對稱性的研究我們已經(jīng)知道正弦函數(shù)(R)是奇函數(shù),即(R),反映在圖象上,正弦曲線關(guān)于原點對稱。那么,正弦曲線還有其他對稱中心嗎?請同學(xué)們參照軸對稱的研究方法,小組合作進行研究。第一階段,對正弦曲線關(guān)于點對稱的研究。1.直觀探索——從圖象上探索在點兩側(cè)的函數(shù)值的變化規(guī)律。2.?dāng)?shù)值檢驗——在左右對稱地選取一組自變量,計算函數(shù)值并列表整理。3.嚴(yán)格證明——證明等式對任意R恒成立。預(yù)案一:根據(jù)誘導(dǎo)公式,有。預(yù)案二:根據(jù)誘導(dǎo)公式和,有。預(yù)案三:根據(jù)正弦函數(shù)的定義,在平面直角坐標(biāo)系中,無論取任何實數(shù),角和的終邊總是關(guān)于軸對稱(見右圖),他們的正弦值互為相反數(shù)。事實上,等式與誘導(dǎo)公式是等價的這樣,正弦曲線關(guān)于點對稱,是誘導(dǎo)公式(R)的幾何意義。第二階段,探索正弦曲線的其它對稱中心。請同學(xué)嘗試解決下列三個問題:1.歸納正弦函數(shù)圖象對稱中心坐標(biāo)的一般形式。正弦函數(shù)圖象對稱中心坐標(biāo)的一般形式為:(Z)(教師利用課件演示)。2.用等式表示"正弦曲線關(guān)于點(Z)對稱"。上述對稱可以用等式(Z,R)表示。3.證明歸納出的等式。(根據(jù)課堂情況可以由學(xué)生課后完成證明)三、課堂小結(jié)1.課堂小結(jié)(1)知識上:得出了正弦函數(shù)圖象對稱軸方程和對稱中心坐標(biāo)的一般形式,研究了對稱性的代數(shù)表示形式,并利用誘導(dǎo)公式完成了嚴(yán)格的理論證明。在研究的過程中,對誘導(dǎo)公式與(R)有了新的理解,感受了正弦函數(shù)的對稱性以及數(shù)和形的辨證統(tǒng)一。(2)方法上:直觀→抽象,特殊→一般,體驗了觀察—歸納—猜想—嚴(yán)格證明的研究方法。2.作業(yè)(1)總結(jié)課上的研究過程和方法,嘗試研究余弦函數(shù)圖象的對稱性,并結(jié)合自己的研究過程和結(jié)論寫出研究報告,與其他同學(xué)交流收獲。(2)找一個一般函數(shù),如,R,研究它的圖象及對稱性;并與正弦函數(shù)的圖象及對稱性進行比較。(3)思考:如何用等式表示函數(shù)關(guān)于直線對稱,以及關(guān)于點對稱?(4)嘗試證明函數(shù)的圖象分別關(guān)于直線和直線對稱。高中數(shù)學(xué)說課稿4各位老師你們好!今天我要為大家講的課題是首先,我對本節(jié)教材進行一些分析:一、教材分析(說教材):1.教材所處的地位和作用:本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《》是中數(shù)學(xué)教材第冊第章第節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在中,占據(jù)的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。2.教育教學(xué)目標(biāo):根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):(1)知識目標(biāo):(2)能力目標(biāo):通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實際問題,讀圖分析,收集處理信息,團結(jié)協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學(xué)生運用知識的能力,培養(yǎng)學(xué)生加強理論聯(lián)系實際的能力,(3)情感目標(biāo):通過的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。3.重點,難點以及確定依據(jù):本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點、難點重點:通過突出重點難點:通過突破難點關(guān)鍵:下面,為了講清重難上點,使學(xué)生能達到本節(jié)課設(shè)定的目標(biāo),再從教法和學(xué)法上談?wù)劊憾?、教學(xué)策略(說教法)1.教學(xué)手段:如何突出重點,突破難點,從而實現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計劃進行如下操作:教學(xué)方法?;诒竟?jié)課的特點:應(yīng)著重采用的教學(xué)方法。2.教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機,明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。3.學(xué)情分析:(說學(xué)法)我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。(1)學(xué)生特點分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點,積極采用形象生動,形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進學(xué)生個性發(fā)展。生理上表少年好動,注意力易分散(2)知識障礙上:知識掌握上,學(xué)生原有的知識,許多學(xué)生出現(xiàn)知識遺忘,所以應(yīng)全面系統(tǒng)的.去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識障礙,知識學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。(3)動機和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力最后我來具體談?wù)勥@一堂課的教學(xué)過程:4.教學(xué)程序及設(shè)想:(1)由引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當(dāng)肖學(xué)習(xí)的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。(2)由實例得出本課新的知識點(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學(xué)生的思維能力。(4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。(5)總結(jié)結(jié)論,強化認(rèn)識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標(biāo)。(6)變式延伸,進行重構(gòu),重視課本例題,適當(dāng)對題目進行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。(7)板書(8)布置作業(yè)。針對學(xué)生素質(zhì)的差異進行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,教學(xué)程序:課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分高中數(shù)學(xué)說課稿5今天我說課的題目是《函數(shù)的單調(diào)性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、教學(xué)過程五方面逐一加以分析和說明。一、說教材1、教材的地位和作用本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第3節(jié)。函數(shù)是高中數(shù)學(xué)的課程,它是描述事物運動變化的模型,而函數(shù)的單調(diào)性是函數(shù)的一大特征,它為我們之后的學(xué)習(xí)奠定重要基礎(chǔ)。2、學(xué)情分析本節(jié)課的學(xué)生是高一學(xué)生,他們在初中階段,通過一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對函數(shù)的增減性有了初步的感性認(rèn)識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學(xué)生的理性思維,為后續(xù)函數(shù)的學(xué)習(xí)作準(zhǔn)備,也為利用倒數(shù)研究單調(diào)性的相關(guān)知識奠定了基礎(chǔ)。教學(xué)目標(biāo)分析基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個部分:1、知識與技能(1)理解函數(shù)的單調(diào)性和單調(diào)函數(shù)的意義;(2)會判斷和證明簡單函數(shù)的單調(diào)性。2、過程與方法(1)培養(yǎng)從概念出發(fā),進一步研究性質(zhì)的意識及能力;(2)體會數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想。3、情感態(tài)度與價值觀由合適的例子引發(fā)學(xué)生探求數(shù)學(xué)知識的欲望,突出學(xué)生的主觀能動性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。三、教學(xué)重難點分析通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點重點:函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性。難點:1、函數(shù)單調(diào)性概念的認(rèn)知(1)自然語言到符號語言的轉(zhuǎn)化;(2)常量到變量的轉(zhuǎn)化。2、應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。四、教法與學(xué)法分析1、教法分析基于以上對教材、學(xué)情的分析以及新課標(biāo)的教學(xué)理念,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。2、學(xué)法分析新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的`方法理解函數(shù)的單調(diào)性及特征。五、教學(xué)過程為了更好的實現(xiàn)本課的三維目標(biāo),并突破重難點,我設(shè)計以下五個環(huán)節(jié)來進行我的教學(xué)。(一)知識導(dǎo)入溫故而知新,我將先從之前學(xué)習(xí)的知識引入,給出一些函數(shù),比如y=_、y=-_、y=|_|,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生討論這些函數(shù)圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學(xué)生掌握基本初等函數(shù)圖像的情況,而且符合學(xué)生的認(rèn)知結(jié)構(gòu),通過學(xué)生自主探究,從知識產(chǎn)生、發(fā)展的過程中構(gòu)建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習(xí)的積極主動性。(二)講授新課1.問題:分別做出函數(shù)y=_2,y=_+2的圖像,指出上面的函數(shù)圖象在哪個區(qū)間是上升的,在哪個區(qū)間是下降的?通過學(xué)生熟悉的圖像,及時引導(dǎo)學(xué)生觀察,函數(shù)圖像上A點的運動情況,引導(dǎo)學(xué)生能用自然語言描述出,隨著_增大時圖像變化規(guī)律。讓學(xué)生大膽的去說,老師逐步修正、完善學(xué)生的說法,最后給出正確答案。2、觀察函數(shù)y=_2隨自變量_變化的情況,設(shè)置啟發(fā)式問題:(1)在y軸的右側(cè)部分圖象具有什么特點?(2)如果在y軸右側(cè)部分取兩個點(_1,y1),(_2,y2),當(dāng)_1(3)如何用數(shù)學(xué)符號語言來描述這個規(guī)律?教師補充:這時我們就說函數(shù)y=_2在(0,+∞)上是增函數(shù)。(4)反過來,如果y=f(_)在(0,+∞)上是增函數(shù),我們能不能得到自變量與函數(shù)值的變化規(guī)律呢?類似地分析圖象在y軸的左側(cè)部分。通過對以上問題的分析,從正、反兩方面領(lǐng)會函數(shù)單調(diào)性。師生共同總結(jié)出單調(diào)增函數(shù)的定義,并解讀定義中的關(guān)鍵詞,如:區(qū)間內(nèi),任意,當(dāng)_1仿照單調(diào)增函數(shù)定義,由學(xué)生說出單調(diào)減函數(shù)的定義。教師總結(jié)歸納單調(diào)性和單調(diào)區(qū)間的定義。注意強調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個區(qū)間上的局部性質(zhì),也就是說,一個函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。(我將給出函數(shù)y=_2,并畫出這個函數(shù)的圖像,讓學(xué)生觀察函數(shù)圖像的特點,讓他們描述函數(shù)圖像的增減性,慢慢得到函數(shù)單調(diào)性的概念。在這個過程中,學(xué)生把對圖像的感性認(rèn)識轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過程有利于學(xué)生對概念的理解)(三)鞏固練習(xí)1練習(xí)1:說出函數(shù)f(_)=的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。_練習(xí)2:練習(xí)2:判斷下列說法是否正確①定義在R上的函數(shù)f(_)滿足f(2)>f(1),則函數(shù)是R上的增函數(shù)。②定義在R上的函數(shù)f(_)滿足f(2)>f(1),則函數(shù)是R上不是減函數(shù)。1③已知函數(shù)y=,因為f(-1)1我將給出一些具體的函數(shù),如y=,f(_)=3_+2讓學(xué)生說出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間_上的單調(diào)性。通過這種練習(xí)的方式,幫助學(xué)生鞏固對知識的掌握。(四)歸納總結(jié)我先讓學(xué)生進行小結(jié),函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。(五)布置作業(yè)必做題:習(xí)題2-3A組第2,4,5題。選做題:習(xí)題2-3B組第2題。新課程理念告訴我們,不同的人在數(shù)學(xué)上可以獲得不同的發(fā)展,因此要設(shè)計不同程度要求的習(xí)題。高中數(shù)學(xué)說課稿6本節(jié)課講述的是人教版高一數(shù)學(xué)(上)3.2等差數(shù)列(第一課時)的內(nèi)容。一、教材分析1、教材的地位和作用:數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。2、教學(xué)目標(biāo)根據(jù)教學(xué)大綱的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標(biāo)a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建模”的思想方法并能運用。b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。3、教學(xué)重點和難點根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點為:①等差數(shù)列的概念。②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學(xué)生對“數(shù)學(xué)建模”的思想方法較為陌生,因此用數(shù)學(xué)思想解決實際問題是本節(jié)課的另一個難點。二、學(xué)情教法分析:對于三中的高一學(xué)生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。三、學(xué)法指導(dǎo):在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。四、教學(xué)程序本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。(一)復(fù)習(xí)引入:1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______。(N﹡;解析式)通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92①3.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25②通過練習(xí)2和3引出兩個具體的等差數(shù)列,初步認(rèn)識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。(二)新課探究1、由引入自然的給出等差數(shù)列的概念:如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):①“從第二項起”滿足條件;②公差d一定是由后項減前項所得;③每一項與它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)”);在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達式:an+1-an=d(n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。1.9,8,7,6,5,4,??;√d=-12.0.70,0.71,0.72,0.73,0.74??;√d=0.013.0,0,0,0,0,0,??.;√d=04.1,2,3,2,3,4,??;_5.1,0,1,0,1,??_其中第一個數(shù)列公差0,第三個數(shù)列公差=0由此強調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是02、第二個重點部分為等差數(shù)列的通項公式在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項,公差d,由學(xué)生研究分組討論a4的通項公式。通過總結(jié)a4的通項公式由學(xué)生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的`協(xié)作意識又化解了教學(xué)難點。若一等差數(shù)列{an}的首項是a1,公差是d,則據(jù)其定義可得:a2-a1=d即:a2=a1+da3–a2=d即:a3=a2+d=a1+2da4–a3=d即:a4=a3+d=a1+3d??猜想:a40=a1+39d,進而歸納出等差數(shù)列的通項公式:an=a1+(n-1)d此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:a2–a1=da3–a2=da4–a3=d??an–an-1=d將這(n-1)個等式左右兩邊分別相加,就可以得到an–a1=(n-1)d即an=a1+(n-1)d(1)當(dāng)n=1時,(1)也成立,所以對一切n∈N﹡,上面的公式都成立因此它就是等差數(shù)列{an}的通項公式。在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個等式。對照已歸納出的通項公式啟發(fā)學(xué)生想出將n-1個等式相加。證出通項公式。在這里通過該知識點引入迭加法這一數(shù)學(xué)思想,逐步達到“注重方法,凸現(xiàn)思想”的教學(xué)要求接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)_2,即an=2n-1以此來鞏固等差數(shù)列通項公式運用同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。(三)應(yīng)用舉例這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。例1(1)求等差數(shù)列8,5,2,?的第20項;第30項;第40項(2)-401是不是等差數(shù)列-5,-9,-13,?的項?如果是,是第幾項?在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an.例2在等差數(shù)列{an}中,已知a5=10,a12=31,求首項a1與公差d。在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固例3是一個實際建模問題建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實際問題轉(zhuǎn)化為數(shù)學(xué)模型------等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學(xué)生認(rèn)為是16項,應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。設(shè)置此題的目的:1.加強同學(xué)們對應(yīng)用題的綜合分析能力,2.通過數(shù)學(xué)實際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;3.再者通過數(shù)學(xué)實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實際問題的“數(shù)學(xué)建模”的數(shù)學(xué)思想方法(四)反饋練習(xí)1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進行基本技能訓(xùn)練。2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。目的:對學(xué)生加強建模思想訓(xùn)練。3、若數(shù)例{an}是等差數(shù)列,若bn=kan,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列此題是對學(xué)生進行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。(五)歸納小結(jié)(由學(xué)生總結(jié)這節(jié)課的收獲)1.等差數(shù)列的概念及數(shù)學(xué)表達式.強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)2.等差數(shù)列的通項公式an=a1+(n-1)d會知三求一3.用“數(shù)學(xué)建?!彼枷敕椒ń鉀Q實際問題(六)布置作業(yè)必做題:課本P114習(xí)題3.2第2,6題選做題:已知等差數(shù)列{an}的首項a1=-24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)五、板書設(shè)計在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。高中數(shù)學(xué)說課稿7各位老師:大家好!我叫___,來自__。我說課的題目是《概率的基本性質(zhì)》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第一節(jié),課時安排為三個課時,本節(jié)課內(nèi)容為第三課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教法分析、教學(xué)過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計:一、教材分析1、教材所處的地位和作用本節(jié)課主要包含了兩部分內(nèi)容:一是事件的關(guān)系與運算,二是概率的基本性質(zhì),多以基本概念和性質(zhì)為主。它是本冊第二章統(tǒng)計的延伸,又是后面"古典概型"及"幾何概型"的基礎(chǔ)。在整個教學(xué)中起到承上啟下的作用。同時也是新課改以來考查的熱點之一。2、教學(xué)的重點和難點重點:概率的加法公式及其應(yīng)用;事件的關(guān)系與運算。難點:互斥事件與對立事件的區(qū)別與聯(lián)系二、教學(xué)目標(biāo)分析1.知識與技能目標(biāo)⑴了解隨機事件間的基本關(guān)系與運算;⑵掌握概率的幾個基本性質(zhì),并會用其解決簡單的概率問題。2、過程與方法:⑴通過觀察、類比、歸納培養(yǎng)學(xué)生運用數(shù)學(xué)知識的綜合能力;⑵通過學(xué)生自主探究,合作探究培養(yǎng)學(xué)生的動手探索的能力。3、情感態(tài)度與價值觀:通過數(shù)學(xué)活動,了解教學(xué)與實際生活的密切聯(lián)系,感受數(shù)學(xué)知識應(yīng)用于現(xiàn)實世界的具體情境,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的情趣。三、教法分析采用實驗觀察、質(zhì)疑啟發(fā)、類比聯(lián)想、探究歸納的教學(xué)方法。四、教學(xué)過程分析1、創(chuàng)設(shè)情境,引入新課在擲骰子的試驗中,我們可以定義許多事件,如:c1=﹛出現(xiàn)的點數(shù)=1﹜,c2=﹛出現(xiàn)的點數(shù)=2﹜c3=﹛出現(xiàn)的點數(shù)=3﹜,c4=﹛出現(xiàn)的點數(shù)=4﹜c5=﹛出現(xiàn)的點數(shù)=5﹜,c6=﹛出現(xiàn)的點數(shù)=6﹜D1=﹛出現(xiàn)的點數(shù)不大于1﹜D2=﹛出現(xiàn)的點數(shù)大于3﹜D3=﹛出現(xiàn)的點數(shù)小于5﹜,E=﹛出現(xiàn)的點數(shù)小于7﹜f=﹛出現(xiàn)的點數(shù)大于6﹜,G=﹛出現(xiàn)的點數(shù)為偶數(shù)﹜H=﹛出現(xiàn)的點數(shù)為奇數(shù)﹜⑴以引入例中的事件c1和事件H,事件c1和事件D1為例講授事件之的包含關(guān)系和相等關(guān)系。⑵從以上兩個關(guān)系學(xué)生不難發(fā)現(xiàn)事件間的關(guān)系與集合間的關(guān)系相類似。進而引導(dǎo)學(xué)生思考,是否可以把事件和集合對應(yīng)起來?!冈O(shè)計意圖」引出我們接下來要學(xué)習(xí)的主要內(nèi)容:事件之間的關(guān)系與運算2、探究新知㈠事件的關(guān)系與運算⑴經(jīng)過上面的思考,我們得出:試驗的可能結(jié)果的全體←→全集↓↓每一個事件←→子集這樣我們就把事件和集合對應(yīng)起來了,用已有的集合間關(guān)系來分析事件間的關(guān)系。集合的并→兩事件的并事件(和事件)集合的交→兩事件的交事件(積事件)在此過程中要注意幫助學(xué)生區(qū)分集合關(guān)系與事件關(guān)系之間的不同。(例如:兩集合A∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發(fā)生,表示或者事件A發(fā)生,或者事件B發(fā)生。)「設(shè)計意圖」為更好地理解互斥事件和對立事件打下基礎(chǔ),⑵思考:①若只擲一次骰子,則事件c1和事件c2有可能同時發(fā)生么?②在擲骰子實驗中事件G和事件H是否一定有一個會發(fā)生?「設(shè)計意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來將要學(xué)習(xí)的互斥事件和對立事件,讓學(xué)生從實際案例中體驗它們各自的特征以及它們之間的區(qū)別與聯(lián)系。⑶總結(jié)出互斥事件和對立事件的概念,并通過多媒體的圖形演示使學(xué)生們能更好地理解它們的特征以及它們之間的區(qū)別與聯(lián)系。⑷練習(xí):通過多媒體顯示兩道練習(xí),目的是讓學(xué)生們能夠及時鞏固對互斥事件和對立事件的學(xué)習(xí),加深理解。㈡概率的基本性質(zhì):⑴回顧:頻率=頻數(shù)/試驗的次數(shù)我們知道當(dāng)試驗次數(shù)足夠大時,用頻率來估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質(zhì)、(通過對頻率的理解并結(jié)合前面投硬幣的`實驗來總結(jié)出概率的基本性質(zhì),師生共同交流得出結(jié)果)3、典型例題探究例1一個射手進行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?事件A:命中環(huán)數(shù)大于7環(huán);事件B:命中環(huán)數(shù)為10環(huán);事件c:命中環(huán)數(shù)小于6環(huán);事件D:命中環(huán)數(shù)為6、7、8、9、10環(huán)、分析:要判斷所給事件是對立還是互斥,首先將兩個概念的聯(lián)系與區(qū)別弄清楚例2如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問:(1)取到紅色牌(事件c)的概率是多少?(2)取到黑色牌(事件D)的概率是多少?分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).「設(shè)計意圖」通過這兩道例題,進一步鞏固學(xué)生對本節(jié)課知識的掌握,并將所學(xué)知識應(yīng)用到實際解決問題中去。4、課堂小結(jié)⑴理解事件的關(guān)系和運算⑵掌握概率的基本性質(zhì)「設(shè)計意圖」小結(jié)是引導(dǎo)學(xué)生對問題進行回味與深化,使知識成為系統(tǒng)。讓學(xué)生嘗試小結(jié),提高學(xué)生的總結(jié)能力和語言表達能力。教師補充幫助學(xué)生全面地理解,掌握新知識。5、布置作業(yè)習(xí)題3、1A1、3、4「設(shè)計意圖」課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。五、板書設(shè)計概率的基本性質(zhì)一、事件間的關(guān)系和運算二、概率的基本性質(zhì)三、例1的板書區(qū)例2的板書區(qū)四、規(guī)律性質(zhì)總結(jié)高中數(shù)學(xué)說課稿8我今天說課的課題是新課標(biāo)高中數(shù)學(xué)人教版A版必修第二冊第三章“3.1.1傾斜角與斜率”。我說課的程序主要由說教材、說教法、說學(xué)法、說教學(xué)程序這四個部分組成。一、說教材:1、教材分析:直線的傾斜角和斜率是解析幾何的重要概念之一,也是直線的重要的幾何要素。學(xué)生在原有的對直線的有關(guān)性質(zhì)及平面向量的相關(guān)知識理解的基礎(chǔ)上,重新以坐標(biāo)化(解析化)的方式來研究直線相關(guān)性質(zhì),而本節(jié)直線的傾斜角與斜率,是直線的重要的幾何性質(zhì),是研究直線的方程形式,直線的位置關(guān)系等的思維的起點;另外,本節(jié)也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本節(jié)課的有著開啟全章,奠定基調(diào),滲透方法,明確方向,承前啟后的作用。2、教學(xué)目標(biāo)根據(jù)本課教材的特點,新大綱對本節(jié)課的教學(xué)要求,結(jié)合學(xué)生身心發(fā)展的合理需要,我從三個方面確定了以下教學(xué)目標(biāo):(1)知識與技能目標(biāo):了解直線的方程和方程的直線的概念;在新的問題的情境中,去主動構(gòu)建理解直線的傾斜角和斜率的定義;初步感悟用代數(shù)方法解決幾何問題的思想方法。(2)過程與方法目標(biāo):引導(dǎo)學(xué)生觀察發(fā)現(xiàn)、類比,猜想和實驗探索,培養(yǎng)學(xué)生的創(chuàng)新能力和動手能力(3)情感、態(tài)度與價值觀目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評價,實現(xiàn)共同探究、教學(xué)相長的教學(xué)情境。3、教學(xué)重點、難點(1)教學(xué)重點:理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線的斜率的計算公式。(2)教學(xué)難點:斜率公式的推導(dǎo)二、說教法課堂教學(xué)應(yīng)有利于學(xué)生的數(shù)學(xué)素質(zhì)的形成與發(fā)展,即在課堂教學(xué)過程中,創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生主動的發(fā)現(xiàn)問題解決問題,充分調(diào)動學(xué)生學(xué)習(xí)的'主動性、積極性;有效地滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個性思維品質(zhì),這是本節(jié)課的教學(xué)原則。根據(jù)這樣的原則及所要完成的教學(xué)目標(biāo),我采用觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、探索實驗相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極的思考并對學(xué)生的思維進行調(diào)控,使學(xué)生優(yōu)化思維過程;在此基礎(chǔ)上,通過學(xué)生交流與合作,從而擴展自己的數(shù)學(xué)知識和使用數(shù)學(xué)知識及數(shù)學(xué)工具的能力,實現(xiàn)自覺地、主動地、積極地學(xué)習(xí)。三、說學(xué)法在實際教學(xué)中,根據(jù)學(xué)生對問題的感受程度不同,學(xué)習(xí)熱情、身心特點等,對學(xué)生進行針對性的學(xué)法指導(dǎo)。主要運用引導(dǎo)、啟發(fā)、情感暗示等隱性形式來影響學(xué)生,多提供機會讓學(xué)生去想、去做,給學(xué)生自己動手、參與教學(xué)過程、發(fā)現(xiàn)問題、討論問題提供了很好的機會。這不僅讓學(xué)生對所學(xué)內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動學(xué)生學(xué)習(xí)的熱情,讓學(xué)生學(xué)會學(xué)習(xí),學(xué)會探索問題的方法,培養(yǎng)學(xué)生的能力。四、說教學(xué)程序:1、導(dǎo)入新課:提出問題:如何確定一條直線的位置?(1)兩點確定一條直線;(2)一點能確定一條直線嗎?過一點P可以作無數(shù)條直線,這些直線的傾斜程度不同,如何描述直線的傾斜程度?本節(jié)課將解決這個問題。設(shè)計意圖:打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識的創(chuàng)新做好了準(zhǔn)備;同時也讓學(xué)生領(lǐng)會到,直線的傾斜角這一概念的產(chǎn)生是因為研究直線的需要,從而明確新課題研究的必要性,觸發(fā)學(xué)生積極思維活動的展開。2、探究發(fā)現(xiàn):(1)直線的傾斜角:有新課導(dǎo)入直接引出此概念,學(xué)生易于接受,但是容易忽視其中的重點字。因此重點強調(diào)定義的幾個注意點:①_軸正半軸;②直線向上方向;③當(dāng)直線與_軸平行或重合時,直線的傾斜角為0度。由此得出直線傾斜角的取值范圍。(2)直線的確定方法:確定平面直角坐標(biāo)系中一條直線位置的幾何要素:直線上的一個定點以及它的傾斜角,二者缺一不可。(3)直線的斜率:注:直線的傾斜角與斜率的區(qū)別:所有的直線都有傾斜角;但是不是所有直線都有斜率(傾斜角為90°的直線沒有斜率,因為90°的正切不存在。)(4)由兩點確定的直線的斜率:先讓學(xué)生自主探究、學(xué)生之間互相交流,然后再由師生共同歸納得出結(jié)論:經(jīng)過兩點P1(_1.y1),P2(_2,y2)直線的斜率公式:(_1≠_2)。3、學(xué)用結(jié)合:(1)例題講解:P89-90/例題1和例題2.例題的講解主要關(guān)注思路的點撥以及解題過程的規(guī)范書寫。(2)課堂練習(xí):P91/練習(xí)第1、2題4、總結(jié)歸納:直線的傾斜角直線的斜率直線的斜率公式定義取值范圍5、布置作業(yè):P91/練習(xí)第3、4題。高中數(shù)學(xué)說課稿9尊敬的各位考官:大家好,我是今天的__號考生,今天我說課的內(nèi)容是《單調(diào)性與最大(小)值》的第一課時《單調(diào)性》。新課標(biāo)指出:高中數(shù)學(xué)課程對于認(rèn)識數(shù)學(xué)與自然界、數(shù)學(xué)與人類社會的關(guān)系,認(rèn)識數(shù)學(xué)的科學(xué)價值、文化價值,提高提出問題、分析和解決問題的能力,形成理性思維,發(fā)展智力和創(chuàng)新意識具有基礎(chǔ)性的作用。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。一、說教材本節(jié)課選自人教A版高中數(shù)學(xué)必修1第一章《集合與函數(shù)概念》的第三節(jié)《函數(shù)的基本性質(zhì)》第一小節(jié)《單調(diào)性與最大(小)值》的第一課時。本小節(jié)主要講解的內(nèi)容是函數(shù)的'單調(diào)性以及最大、最小值的概念,本節(jié)課主要講解增減函數(shù)的概念以及單調(diào)性。之前學(xué)生對于函數(shù)的概念已經(jīng)進行了學(xué)習(xí),本節(jié)課是在原來的基礎(chǔ)上進一步鞏固函數(shù)的概念,但是主要是針對性質(zhì)的學(xué)習(xí)。并且為之后研究函數(shù)的性質(zhì)、用函數(shù)的性質(zhì)解決生活中的問題起到非常關(guān)鍵性的作用。所以本節(jié)課的學(xué)習(xí)對于學(xué)生至關(guān)重要。二、說學(xué)情接下來談?wù)剬W(xué)生的實際情況。高中一年級的學(xué)生雖然剛剛步入高中,需要適應(yīng)高中的教學(xué)方式,但是學(xué)生的觀察能力、總結(jié)能力、歸納能力、類比能力、抽象能力等已經(jīng)發(fā)展的比較成熟。所以教學(xué)中,可以將更多的活動交給學(xué)生進行探究。還可以進行自主學(xué)習(xí),提高各方面的能力。三、說教學(xué)目標(biāo)根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):(一)知識與技能認(rèn)識函數(shù)值隨自變量的增大而增大(減小)的規(guī)律,由此得出增(減)函數(shù)的定義。掌握用定義證明函數(shù)單調(diào)性的基本方法與步驟。(二)過程與方法在研究函數(shù)性質(zhì)的過程中,通過自主探究活動,學(xué)習(xí)數(shù)學(xué)思考的基本方法,提高數(shù)學(xué)思維能力。(三)情感態(tài)度價值觀感知從具體到抽象、從特殊到一般、從感性到理性的認(rèn)知過程,養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣。四、說教學(xué)重難點我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點是:增(減)函數(shù)的定義。教學(xué)難點是:從圖象升降的直觀認(rèn)識過渡到函數(shù)增減的數(shù)學(xué)符號語言表述;用定義證明函數(shù)的單調(diào)性。五、說教法和學(xué)法現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,我將采用講授法、練習(xí)法、自主探究等教學(xué)方法。六、說教學(xué)過程下面我將重點談?wù)勎覍虒W(xué)過程的設(shè)計。(一)導(dǎo)入新課首先是導(dǎo)入環(huán)節(jié),大屏幕直接展示圖1.3-1,并讓學(xué)生通過對兩個圖象的觀察,總結(jié)圖象具有什么特點,根據(jù)學(xué)生對圖象變化特點的表述,引出本節(jié)課研究的內(nèi)容為《單調(diào)性》。這樣通過函數(shù)的圖象進行引入,既能夠提高學(xué)生的學(xué)習(xí)興趣,還能夠為后面研究增減函數(shù)的抽象定義做鋪墊,讓學(xué)生對于函數(shù)的性質(zhì)有比較直觀的認(rèn)識。(二)探索新知接下來是教學(xué)中最重要的探索新知環(huán)節(jié),我主要分為以下幾步。第一個內(nèi)容是對“上升”、“下降”的直觀認(rèn)識。高中數(shù)學(xué)說課稿10各位老師:大家好!我叫___,來自__。我說課的題目是《古典概型》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時安排為兩個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教法與學(xué)法分析、教學(xué)過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計:一、教材分析1.教材所處的地位和作用古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當(dāng)重要的地位。它承接著前面學(xué)過的隨機事件的概率及其性質(zhì),又是以后學(xué)習(xí)條件概率的基礎(chǔ),起到承前啟后的作用。2.教學(xué)的重點和難點重點:理解古典概型及其概率計算公式。難點:古典概型的判斷及把一些實際問題轉(zhuǎn)化成古典概型。二、教學(xué)目標(biāo)分析1.知識與技能目標(biāo)(1)通過試驗理解基本事件的概念和特點(2)在數(shù)學(xué)建模的過程中,抽離出古典概型的兩個基本特征,推導(dǎo)出古典概型下的概率的計算公式。2、過程與方法:經(jīng)歷公式的推導(dǎo)過程,體驗由特殊到一般的數(shù)學(xué)思想方法。3、情感態(tài)度與價值觀:(1)用具有現(xiàn)實意義的實例,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生勇于探索,善于發(fā)現(xiàn)的創(chuàng)新思想。(2)讓學(xué)生掌握"理論來源于實踐,并把理論應(yīng)用于實踐"的辨證思想。三、教法與學(xué)法分析1、教法分析:根據(jù)本節(jié)課的特點,采用引導(dǎo)發(fā)現(xiàn)和歸納概括相結(jié)合的教學(xué)方法,通過提出問題、思考問題、解決問題等教學(xué)過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的主體能動性,讓每一個學(xué)生充分地參與到學(xué)習(xí)活動中來。2、學(xué)法分析:學(xué)生在教師創(chuàng)設(shè)的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結(jié)合,體現(xiàn)了學(xué)生的主體地位,培養(yǎng)了學(xué)生由具體到抽象,由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度。㈠創(chuàng)設(shè)情景、引入新課在課前,教師布置任務(wù),以小組為單位,完成下面兩個模擬試驗:試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數(shù),要求每個數(shù)學(xué)小組至少完成20次(最好是整十?dāng)?shù)),最后由代表匯總;試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數(shù),要求每個數(shù)學(xué)小組至少完成60次(最好是整十?dāng)?shù)),最后由代表匯總。在課上,學(xué)生展示模擬試驗的操作方法和試驗結(jié)果,并與同學(xué)交流活動感受,教師最后匯總方法、結(jié)果和感受,并提出兩個問題。1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結(jié)果是頻率,而不是概率。2.根據(jù)以前的學(xué)習(xí),上述兩個模擬試驗的每個結(jié)果之間都有什么特點?]「設(shè)計意圖」通過課前的模擬實驗,讓學(xué)生感受與他人合作的重要性,培養(yǎng)學(xué)生運用數(shù)學(xué)語言的能力。隨著新問題的提出,激發(fā)了學(xué)生的求知欲望,通過觀察對比,培養(yǎng)了學(xué)生發(fā)現(xiàn)問題的能力。㈡思考交流、形成概念學(xué)生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關(guān)特點加以說明,加深對新概念的理解。[基本事件有如下的兩個特點:(1)任何兩個基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.]「設(shè)計意圖」讓學(xué)生從問題的相同點和不同點中找出研究對象的對立統(tǒng)一面,這能培養(yǎng)學(xué)生分析問題的能力,同時也教會學(xué)生運用對立統(tǒng)一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學(xué)生更好的把握問題的關(guān)鍵。例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?先讓學(xué)生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優(yōu)點?!冈O(shè)計意圖」將數(shù)形結(jié)合和分類討論的思想滲透到具體問題中來。由于沒有學(xué)習(xí)排列組合,因此用列舉法列舉基本事件的個數(shù),不僅能讓學(xué)生直觀的感受到對象的總數(shù),而且還能使學(xué)生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數(shù)這一難點觀察對比,發(fā)現(xiàn)兩個模擬試驗和例1的共同特點:讓學(xué)生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結(jié)得到的結(jié)論,教師最后補充說明。[經(jīng)概括總結(jié)后得到:(1)試驗中所有可能出現(xiàn)的基本事件只有有限個;(有限性)(2)每個基本事件出現(xiàn)的可能性相等。(等可能性)我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型?!冈O(shè)計意圖」培養(yǎng)運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現(xiàn)了數(shù)學(xué)的化歸思想。啟發(fā)誘導(dǎo)的同時,訓(xùn)練了學(xué)生觀察和概括歸納的能力。通過列出相同和不同點,能讓學(xué)生很好的理解古典概型。㈢觀察分析、推導(dǎo)方程問題思考:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機事件出現(xiàn)的概率如何計算?教師提出問題,引導(dǎo)學(xué)生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結(jié)果,發(fā)現(xiàn)其中的聯(lián)系,最后概括總結(jié)得出古典概型計算任何事件的.概率計算公式:「設(shè)計意圖」鼓勵學(xué)生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學(xué)生感受數(shù)學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。提問:(1)在例1的實驗中,出現(xiàn)字母"d"的概率是多少?(2)在使用古典概型的概率公式時,應(yīng)該注意什么?「設(shè)計意圖」教師提問,學(xué)生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。㈣例題分析、推廣應(yīng)用例2單選題是標(biāo)準(zhǔn)化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內(nèi)容,他可以選擇唯一正確的答案。假設(shè)考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?學(xué)生先思考再回答,教師對學(xué)生沒有注意到的關(guān)鍵點加以說明?!冈O(shè)計意圖」讓學(xué)生明確決概率的計算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。鞏固學(xué)生對已學(xué)知識的掌握。例3同時擲兩個骰子,計算:(1)一共有多少種不同的結(jié)果?(2)其中向上的點數(shù)之和是5的結(jié)果有多少種?(3)向上的點數(shù)之和是5的概率是多少?先給出問題,再讓學(xué)生完成,然后引導(dǎo)學(xué)生分析問題,發(fā)現(xiàn)解答中存在的問題。引導(dǎo)學(xué)生用列表來列舉試驗中的基本事件的總數(shù)?!冈O(shè)計意圖」利用列表數(shù)形結(jié)合和分類討論,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養(yǎng)學(xué)生運用數(shù)形結(jié)合的思想,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強學(xué)生數(shù)學(xué)思維情趣,形成學(xué)習(xí)數(shù)學(xué)知識的積極態(tài)度。㈤探究思想、鞏固深化問題思考:為什么要把兩個骰子標(biāo)上記號?如果不標(biāo)記號會出現(xiàn)什么情況?你能解釋其中的原因嗎?要求學(xué)生觀察對比兩種結(jié)果,找出問題產(chǎn)生的原因。「設(shè)計意圖」通過觀察對比,發(fā)現(xiàn)兩種結(jié)果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學(xué)重點,體現(xiàn)了學(xué)生的主體地位,逐漸養(yǎng)成自主探究能力。㈥總結(jié)概括、加深理解1.基本事件的特點2.古典概型的特點3.古典概型的概率計算公式學(xué)生小結(jié)歸納,不足的地方老師補充說明?!冈O(shè)計意圖」使學(xué)生對本節(jié)課的知識有一個系統(tǒng)全面的認(rèn)識,并把學(xué)過的相關(guān)知識有機地串聯(lián)起來,便于記憶和應(yīng)用,也進一步升華了這節(jié)課所要表達的本質(zhì)思想,讓學(xué)生的認(rèn)知更上一層。㈦布置作業(yè)課本練習(xí)1、2、3「設(shè)計意圖」進一步讓學(xué)生掌握古典概型及其概率公式,并能夠?qū)W以致用,加深對本節(jié)課的理解。高中數(shù)學(xué)說課稿11一、說教材(1)說教材的內(nèi)容和地位本次說課的內(nèi)容是人教版高一數(shù)學(xué)必修一第一單元第一節(jié)《集合》(第一課時)。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握以及使用數(shù)學(xué)語言的基礎(chǔ)。從知識結(jié)構(gòu)上來說是為了引入函數(shù)的定義。因此在高中數(shù)學(xué)的模塊中,集合就顯得格外的舉足輕重了。(2)說教學(xué)目標(biāo)根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,依據(jù)新課標(biāo)制定如下教學(xué)目標(biāo):1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。2.過程與方法:通過情景設(shè)置提出問題,揭示課題,培養(yǎng)學(xué)生主動探究新知的習(xí)慣。并通過"自主、合作與探究"實現(xiàn)"一切以學(xué)生為中心"的理念。3.情感態(tài)度與價值觀:感受數(shù)學(xué)的人文價值,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,由集合的學(xué)習(xí)感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美。同時通過自主探究領(lǐng)略獲取新知識的喜悅。(3)說教學(xué)重點和難點依據(jù)課程標(biāo)準(zhǔn)和學(xué)生實際,我確定本課的教學(xué)重點為教學(xué)重點:集合的基本概念及元素特征。教學(xué)難點:掌握集合元素的三個特征,體會元素與集合的屬于關(guān)系。二、說教法和學(xué)法接下來則是說教法、學(xué)法教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應(yīng)的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點,就本節(jié)課而言,我采用"生活實例與數(shù)學(xué)實例"相結(jié)合,"師生互動與課堂布白"相輔助的方法。通過不同層次的練習(xí)體驗,憑借有趣、實用的教學(xué)手段,突出重點,突破難點。然而,學(xué)生是學(xué)習(xí)的主人,以學(xué)生為主體,創(chuàng)造條件讓學(xué)生參與探究活動,()不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習(xí)的技能和激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,本次活動采用的學(xué)法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。總之,不管采取什么教法和學(xué)法,每節(jié)課都應(yīng)不斷研究學(xué)生的學(xué)習(xí)心理機制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng)造和諧的課堂氛圍。三、說教學(xué)過程接著我來說一下最重要的部分,本節(jié)課的教學(xué)過程:這節(jié)課的流程主要分為六個環(huán)節(jié):創(chuàng)設(shè)情境(引入目標(biāo))、自主探究(感知目標(biāo))、討論辨析(理解目標(biāo))、變式訓(xùn)練(鞏固目標(biāo))、課堂小結(jié)(自我評價)、作業(yè)布置(反饋矯正)。上述六個環(huán)節(jié)由淺入深,層層遞進。多層次、多角度地加深對概念的理解。提高學(xué)生學(xué)習(xí)的興趣,以達到良好的教學(xué)效果。第一環(huán)節(jié):創(chuàng)設(shè)問題情境,引入目標(biāo)課堂開始我將提出兩個問題:問題1:班級有20名男生,16名女生,問班級一共多少人?問題2:某次運動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?這里我會讓學(xué)生以小組討論的形式進行討論問題,事實上小組合作的形式是本節(jié)課主要形式。待學(xué)生討論完畢以后我將作歸納總結(jié):問題2已無法用學(xué)過的知識加以解釋,這是與集合有關(guān)的問題,因此需用集合的語言加以描述(同時我將板書標(biāo)題:集合)。安排這一過程的意圖是為了從實際問題引入,讓學(xué)生了解數(shù)學(xué)來源于實際。從而激發(fā)學(xué)生參與課堂學(xué)習(xí)的欲望。很自然地進入到第二環(huán)節(jié):自主探究讓學(xué)生閱讀教材,并思考下列問題:(1)有那些概念?(2)有那些符號?(3)集合中元素的特性是什么?安排這一過程的意圖是給學(xué)生提供活動空間,讓主體主動建構(gòu)自己的知識結(jié)構(gòu)。培養(yǎng)學(xué)生的探究能力。讓學(xué)生自主探究之后將進入第三環(huán)節(jié):討論辨析小組合作探究(1)讓學(xué)生觀察下列實例(1)1~20以內(nèi)的所有質(zhì)數(shù);(2)所有的正方形;(3)到直線的距離等于定長的所有的點;(4)方程的所有實數(shù)根;通過以上實例,辨析概念:(1)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而集合中的每個對象叫做這個集合的元素。(2)表示方法:集合通常用大括號{}或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。小組合作探究(2)——集合元素的特征問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?問題4:某單位所有的"帥哥"能否構(gòu)成一個集合?由此說明什么?集合中的元素必須是確定的問題5:在一個給定的集合中能否有相同的.元素?由此說明什么?集合中的元素是不重復(fù)出現(xiàn)的問題6:咱班的全體同學(xué)組成一個集合,調(diào)整座位后這個集合有沒有變化?由此說明什么?集合中的元素是沒有順序的我如此設(shè)計的意圖是因為:問題是數(shù)學(xué)的心臟,感受問題是學(xué)習(xí)數(shù)學(xué)的根本動力。小組合作探究(3)——元素與集合的關(guān)系問題7:設(shè)集合A表示"1~20以內(nèi)的所有質(zhì)數(shù)",那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?問題8:如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達?a屬于集合A,記作a∈A問題9:如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達?a不屬于集合A,記作aA小組合作探究(4)——常用數(shù)集及其表示方法問題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實數(shù)集等一些常用數(shù)集,分別用什么符號表示?自然數(shù)集(非負(fù)整數(shù)集):記作N正整數(shù)集:整數(shù)集:記作Z有理數(shù)集:記作Q實數(shù)集:記作R設(shè)計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學(xué)生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識結(jié)構(gòu)。第四環(huán)節(jié):理論遷移變式訓(xùn)練1.下列指定的對象,能構(gòu)成一個集合的是①很小的數(shù)②不超過30的非負(fù)實數(shù)③直角坐標(biāo)平面內(nèi)橫坐標(biāo)與縱坐標(biāo)相等的點④π的近似值⑤所有無理數(shù)A、②③④⑤B、①②③⑤C、②③⑤D、②③④第五環(huán)節(jié):課堂小結(jié),自我評價1.這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?2.這節(jié)課主要解釋了什么數(shù)學(xué)思想?設(shè)計意圖:引導(dǎo)學(xué)生對所學(xué)知識、思想方法進行小結(jié),形成知識系統(tǒng)。教師用激勵性的語言加一點評,讓學(xué)生的思想敞亮的發(fā)揮出來。第六環(huán)節(jié):作業(yè)布置,反饋矯正1.必做題課本習(xí)題1.1—1、2、3.2.選做題已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數(shù)a的值。設(shè)計意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗。四、板書設(shè)計好的板書就像一份微型教案,為了讓學(xué)生直觀易懂的看筆記,板書應(yīng)設(shè)計得有條理性、概括性、指導(dǎo)性,所以我設(shè)計的板書如下:集合1.集合的概念2.集合元素的特征(學(xué)生板演)3.常見集合的表示4.范例研究高中數(shù)學(xué)說課稿12課題:函數(shù)的單調(diào)性教材:人教版全日制普通高級中學(xué)教科書(必修)數(shù)學(xué)第一冊(上)授課教師:北京景山學(xué)校許云堯【教學(xué)目標(biāo)】1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和定義判斷、證明函數(shù)單調(diào)性的方法.2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合的思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達能力;通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.3.通過知識的探究過程培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣,讓學(xué)生感知從具體到抽象,從特殊到一般,從感性到理性的認(rèn)知過程.【教學(xué)重點】函數(shù)單調(diào)性的概念、判斷及證明.【教學(xué)難點】根據(jù)定義證明函數(shù)的單調(diào)性.【教學(xué)方法】教師啟發(fā)講授,學(xué)生探究學(xué)習(xí).【教學(xué)手段】計算機、投影儀.【教學(xué)過程】一、創(chuàng)設(shè)情境,引入課題為了預(yù)測北京奧運會開幕式當(dāng)天的天氣情況,數(shù)學(xué)興趣小組研究了____年到____年每年這一天的天氣情況,下圖是北京市今年8月8日一天24小時內(nèi)氣溫隨時間變化的曲線圖.引導(dǎo)學(xué)生識圖,捕捉信息,啟發(fā)學(xué)生思考.問題:觀察圖形,能得到什么信息?預(yù)案:(1)當(dāng)天的最高溫度、最低溫度以及達到的時刻;(2)在某時刻的溫度;(3)某些時段溫度升高,某些時段溫度降低.教師指出:在生活中,我們關(guān)心很多數(shù)據(jù)的變化規(guī)律,了解這些數(shù)據(jù)的變化規(guī)律,對我們的生活是很有幫助的.問題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎?預(yù)案:水位高低、降雨量、燃油價格、股票價格等.歸納:用函數(shù)觀點看,其實這些例子反映的就是隨著自變量的變化,函數(shù)值是變大還是變?。荚O(shè)計意圖〗由生活情境引入新課,激發(fā)興趣.二、歸納探索,形成概念對于自變量變化時,函數(shù)值是變大還是變小,是函數(shù)的重要性質(zhì),稱為函數(shù)的單調(diào)性,同學(xué)們在初中對函數(shù)的這種性質(zhì)就有了一定的認(rèn)識,但是沒有嚴(yán)格的定義,今天我們的任務(wù)首先就是建立函數(shù)單調(diào)性的嚴(yán)格定義.1.借助圖象,直觀感知問題1:分別作出函數(shù)的圖象,并且觀察自變量變化時,函數(shù)值的變化規(guī)律?預(yù)案:(1)函數(shù),在整個定義域內(nèi)y隨_的增大而增大;函數(shù),在整個定義域內(nèi)y隨_的增大而減小.(2)函數(shù),在上y隨_的增大而增大,在上y隨_的增大而減?。?3)函數(shù),在上y隨_的增大而減小,在上y隨_的增大而減小.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論