版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆湖北省宜昌市部分示范高中教學(xué)協(xié)作體高二上數(shù)學(xué)期末經(jīng)典試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知空間四邊形,其對(duì)角線、,、分別是邊、的中點(diǎn),點(diǎn)在線段上,且使,用向量,表示向量是A. B.C. D.2.如圖,在三棱錐中,平面ABC,,,,則點(diǎn)A到平面PBC的距離為()A.1 B.C. D.3.意大利數(shù)學(xué)家斐波那契,以兔子繁殖為例,引入“兔子數(shù)列”,,,,,,,,…,在實(shí)際生活中很多花朵的瓣數(shù)恰是斐波那契數(shù)列中的數(shù),斐波那契數(shù)列在物理化學(xué)等領(lǐng)域也有著廣泛的應(yīng)用.已知斐波那契數(shù)列滿足:,,,若,則等于()A. B.C. D.4.某機(jī)構(gòu)通過抽樣調(diào)查,利用列聯(lián)表和統(tǒng)計(jì)量研究患肺病是否與吸煙有關(guān),計(jì)算得,經(jīng)查對(duì)臨界值表知,,現(xiàn)給出四個(gè)結(jié)論,其中正確的是()A.因?yàn)?,故?0%的把握認(rèn)為“患肺病與吸煙有關(guān)"B.因?yàn)椋视?5%把握認(rèn)為“患肺病與吸煙有關(guān)”C.因?yàn)?,故?0%的把握認(rèn)為“患肺病與吸煙無關(guān)”D.因?yàn)椋视?5%的把握認(rèn)為“患肺病與吸煙無關(guān)”5.已知直線l與拋物線交于不同的兩點(diǎn)A,B,O為坐標(biāo)原點(diǎn),若直線的斜率之積為,則直線l恒過定點(diǎn)()A. B.C. D.6.已知數(shù)據(jù)的平均數(shù)是,方差是4,則數(shù)據(jù)的方差是()A.3.4 B.3.6C.3.8 D.47.若數(shù)列滿足,,則數(shù)列的通項(xiàng)公式為()A. B.C. D.8.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希臘西西里島敘拉古(今意大利西西里島上),偉大的古希臘數(shù)學(xué)家、物理學(xué)家,與高斯、牛頓并稱為世界三大數(shù)學(xué)家.有一類三角形叫做阿基米德三角形(過拋物線的弦與過弦端點(diǎn)的兩切線所圍成的三角形),他利用“通近法”得到拋物線的弦與拋物線所圍成的封閉圖形的面積等于阿基米德三角形面積的(即右圖中陰影部分面積等于面積的).若拋物線方程為,且直線與拋物線圍成封閉圖形的面積為6,則()A.1 B.2C. D.39.等比數(shù)列的各項(xiàng)均為正數(shù),且,則A. B.C. D.10.設(shè)雙曲線:(,)的右頂點(diǎn)為,右焦點(diǎn)為,為雙曲線在第二象限上的點(diǎn),直線交雙曲線于另一個(gè)點(diǎn)(為坐標(biāo)原點(diǎn)),若直線平分線段,則雙曲線的離心率為()A. B.C. D.11.在四棱錐中,底面為平行四邊形,為邊的中點(diǎn),為邊上的一列點(diǎn),連接,交于,且,其中數(shù)列的首項(xiàng),則()A. B.為等比數(shù)列C. D.12.若直線與互相垂直,則實(shí)數(shù)a的值為()A.-3 B.C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層燈數(shù)為_____________14.某公司青年、中年、老年員工的人數(shù)之比為10∶8∶7,從中抽取100名作為樣本,若每人被抽中的概率是0.2,則該公司青年員工的人數(shù)為__________15.經(jīng)過點(diǎn),的直線的傾斜角為___________.16.已知P為拋物線上的一個(gè)動(dòng)點(diǎn),設(shè)P到拋物線準(zhǔn)線的距離為d,點(diǎn),那么的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的各項(xiàng)均為正數(shù),,為自然對(duì)數(shù)的底數(shù)(1)求函數(shù)的單調(diào)區(qū)間,并比較與的大??;(2)計(jì)算,,,由此推測(cè)計(jì)算的公式,并給出證明;18.(12分)已知首項(xiàng)為1的數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前n項(xiàng)和.19.(12分)已知函數(shù),,其中.(1)試討論函數(shù)的單調(diào)性;(2)若,證明:.20.(12分)點(diǎn)A、B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于軸上方,.(1)求點(diǎn)P的坐標(biāo);(2)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線AP的距離等于,求橢圓上的點(diǎn)到點(diǎn)M的距離的最小值.21.(12分)如圖,在長(zhǎng)方體中,底面是正方形,O是的中點(diǎn),(1)證明:(2)求直線與平面所成角的正弦值22.(10分)已知點(diǎn)F為拋物線:()的焦點(diǎn),點(diǎn)在拋物線上且在x軸上方,.(1)求拋物線的方程;(2)已知直線與曲線交于A,B兩點(diǎn)(點(diǎn)A,B與點(diǎn)P不重合),直線PA與x軸、y軸分別交于C、D兩點(diǎn),直線PB與x軸、y軸分別交于M、N兩點(diǎn),當(dāng)四邊形CDMN的面積最小時(shí),求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)所給的圖形和一組基底,從起點(diǎn)出發(fā),把不是基底中的向量,用是基底的向量來表示,就可以得到結(jié)論【詳解】解:故選:【點(diǎn)睛】本題考查向量的基本定理及其意義,解題時(shí)注意方法,即從要表示的向量的起點(diǎn)出發(fā),沿著空間圖形的棱走到終點(diǎn),若出現(xiàn)不是基底中的向量的情況,再重復(fù)這個(gè)過程,屬于基礎(chǔ)題2、A【解析】設(shè)點(diǎn)A到平面PBC的距離為,根據(jù)等體積法求解即可.【詳解】因?yàn)槠矫鍭BC,所以,因?yàn)?,,所以又,,所?所以,設(shè)點(diǎn)A到平面PBC的距離為,則,即,,故選:A3、A【解析】利用可化簡(jiǎn)得,由此可得.【詳解】由得:,,即.故選:A.4、A【解析】根據(jù)給定條件利用獨(dú)立性檢驗(yàn)的知識(shí)直接判斷作答.【詳解】因,且,由臨界值表知,,,所以有90%的把握認(rèn)為“患肺病與吸煙有關(guān)”,則A正確,C不正確;.因臨界值3.841>3.305,則不能確定有95%的把握認(rèn)為“患肺病與吸煙有關(guān)”,也不能確定有95%的把握認(rèn)為“患肺病與吸煙無關(guān)”,即B,D都不正確.故選:A5、A【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到,進(jìn)而得到的值,將直線的斜率之積為,用A,B點(diǎn)坐標(biāo)表示出來,結(jié)合的值即可求得答案.【詳解】設(shè)直線方程為,聯(lián)立,整理得:,需滿足,即,則,由,得:,所以,即,故,所以直線l為:,當(dāng)時(shí),,即直線l恒過定點(diǎn),故選:A.6、B【解析】利用方差的定義即可解得.【詳解】由方差的定義,,則,所以數(shù)據(jù)的方差為:.故選:B7、B【解析】根據(jù)等差數(shù)列的定義和通項(xiàng)公式直接得出結(jié)果.【詳解】因?yàn)?,所以?shù)列是等差數(shù)列,公差為1,所以.故選:B8、D【解析】根據(jù)題目所給條件可得阿基米德三角形的面積,再利用三角形面積公式即可求解.【詳解】由題意可知,當(dāng)過焦點(diǎn)的弦垂直于x軸時(shí),即時(shí),,即,故選:D9、B【解析】根據(jù)等比數(shù)列的性質(zhì),結(jié)合已知條件,求得,進(jìn)而求得的值.【詳解】由于數(shù)列是等比數(shù)列,故,所以,故.故選B.【點(diǎn)睛】本小題主要考查等比數(shù)列的性質(zhì),考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.10、A【解析】由給定條件寫出點(diǎn)A,F(xiàn)坐標(biāo),設(shè)出點(diǎn)B的坐標(biāo),求出線段FC的中點(diǎn)坐標(biāo),由三點(diǎn)共線列式計(jì)算即得.【詳解】令雙曲線的半焦距為c,點(diǎn),設(shè),由雙曲線對(duì)稱性得,線段FC的中點(diǎn),因直線平分線段,即點(diǎn)D,A,B共線,于是有,即,即,離心率.故選:A11、A【解析】由得,為邊的中點(diǎn)得,設(shè),所以,根據(jù)向量相等可判斷A選項(xiàng);由得是公比為的等比數(shù)列,可判斷B選項(xiàng);代入可判斷C選項(xiàng);當(dāng)時(shí)可判斷D選項(xiàng).【詳解】由得,因?yàn)闉檫叺闹悬c(diǎn),所以,所以設(shè),所以,所以,當(dāng)時(shí),A選項(xiàng)正確;,由得,是公比為的等比數(shù)列,所以,所以,所以,不是常數(shù),故B選項(xiàng)錯(cuò)誤;所以,由得,故C選項(xiàng)錯(cuò)誤;當(dāng)時(shí),,所以,此時(shí)為的中點(diǎn),與重合,即,,故D錯(cuò)誤.故選:A.12、C【解析】根據(jù)給定條件利用兩條直線互相垂直的關(guān)系列式計(jì)算作答.【詳解】因直線與互相垂直,則,解得,所以實(shí)數(shù)a的值為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】分析:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,利用等比數(shù)列前n項(xiàng)和公式能求出結(jié)果詳解:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,∴S7==381,解得a1=3.故答案為3.點(diǎn)睛:本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力.14、200【解析】先根據(jù)分層抽樣的方法計(jì)算出該單位青年職工應(yīng)抽取的人數(shù),進(jìn)而算出青年職工的總?cè)藬?shù).【詳解】由題意,從中抽取100名員工作為樣本,需要從該單位青年職工中抽取(人).因?yàn)槊咳吮怀橹械母怕适?.2,所以青年職工共有(人).故答案:200.15、【解析】根據(jù)兩點(diǎn)間斜率公式得到斜率,再根據(jù)斜率確定傾斜角大小即可.【詳解】根據(jù)兩點(diǎn)間斜率公式得:,所以直線的傾斜角為:.故答案為:16、5【解析】由拋物線的定義可得,所以,由圖可知當(dāng)三點(diǎn)共線時(shí),取得最小值,從而可求得結(jié)果【詳解】拋物線的焦點(diǎn),準(zhǔn)線為,如圖,過作垂直準(zhǔn)線于點(diǎn),則,所以,由圖可知當(dāng)三點(diǎn)共線時(shí),取得最小值,即最小值為,,所以的最小值為5,故答案為:5三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)詳見解析【解析】(1)求出的定義域,利用導(dǎo)數(shù)求其最大值,得到,取即可得出答案.(2)由,變形求得,,,由此推測(cè):然后用數(shù)學(xué)歸納法證明即可.【小問1詳解】的定義域?yàn)椋?dāng),即時(shí),單調(diào)遞增;當(dāng),即時(shí),單調(diào)遞減故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當(dāng)時(shí),,即令,得,即【小問2詳解】;;由此推測(cè):①下面用數(shù)學(xué)歸納法證明①(1)當(dāng)時(shí),左邊右邊,①成立(2)假設(shè)當(dāng)時(shí),①成立,即當(dāng)時(shí),,由歸納假設(shè)可得所以當(dāng)時(shí),①也成立根據(jù)(1)(2),可知①對(duì)一切正整數(shù)都成立18、(1)(2)【解析】(1)由,構(gòu)造是以為首項(xiàng),為公比等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式可得結(jié)果;(2)由(1)得,利用裂項(xiàng)相消可求.【小問1詳解】由,得,又,所以數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,則,即,故數(shù)列的通項(xiàng)公式為.【小問2詳解】由(1)知,,所以.因?yàn)?,所以,所以?shù)列的前n項(xiàng)和.19、(1)答案見解析(2)證明見解析【解析】(1)先求出函數(shù)的定義域,然后求導(dǎo),再根據(jù)導(dǎo)數(shù)的正負(fù)求出函數(shù)的單調(diào)區(qū)間,(2)要證,只要證,由于時(shí),,當(dāng)時(shí),令,再利用導(dǎo)數(shù)求出其最小值大于零即可【小問1詳解】的定義域?yàn)楫?dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),令,解得;令,解得;綜上所述:當(dāng)時(shí),在上單調(diào)遞增,無減區(qū)間;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】,,即證:,即證:當(dāng)時(shí),,,當(dāng)時(shí),令,則在上單調(diào)遞增在上單調(diào)遞增綜上所述:,即20、(1)(,).(2)【解析】(1)根據(jù)條件列關(guān)于P點(diǎn)坐標(biāo)得方程組,解得結(jié)果,(2)先根據(jù)點(diǎn)到直線距離公式結(jié)合條件解得點(diǎn)M坐標(biāo),再建立的函數(shù)解析式,最后根據(jù)二次函數(shù)性質(zhì)求最小值.【詳解】解:(1)由已知可得點(diǎn)A(-6,0),F(4,0)設(shè)點(diǎn)P(,),則={+6,},={-4,},由已知可得則2+9-18=0,解得=或=-6.由于>0,只能=,于是=.∴點(diǎn)P的坐標(biāo)是(,).(2)直線AP的方程是-+6=0.設(shè)點(diǎn)M(,0),則M到直線AP的距離是.于是=,又-6≤≤6,解得=2.橢圓上的點(diǎn)(,)到點(diǎn)M的距離為,則,由于-6≤≤6,∴當(dāng)=時(shí),取得最小值.【點(diǎn)睛】本題考查直線與橢圓位置關(guān)系,考查基本分析求解能力,屬中檔題.21、(1)證明見解析(2)【解析】(1)以A為坐標(biāo)原點(diǎn),的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,令,可得的坐標(biāo),再求數(shù)量積可得答案;(2)求出平面的法向量、的坐標(biāo),由線面角的向量求法可得答案.【小問1詳解】在長(zhǎng)方體中,以A為坐標(biāo)原點(diǎn),的方向分別為x,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系不妨令,則,,因?yàn)?,所以【小?詳解】由(1)可知,,,設(shè)平面的法向量,則令,得,設(shè)直線與平面所成的角,則.22、(1);(2)或.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 商場(chǎng)租賃物業(yè)合同范例
- 珠寶易貨合同范例
- 房屋預(yù)約合同范例
- 央企合同范例
- 父母房屋租賃合同范例
- 2024年電子商務(wù)平臺(tái)技術(shù)服務(wù)與授權(quán)合同
- 2024年消防報(bào)警系統(tǒng)設(shè)計(jì)與施工合同
- 2024年校園食堂運(yùn)營(yíng)管理合作協(xié)議
- 2024年某電子產(chǎn)品制造商與某分銷商關(guān)于銷售分區(qū)的合同
- 2024年燒結(jié)磚購(gòu)銷細(xì)則協(xié)議范本版B版
- 02S515排水檢查井圖集
- 2024-2030年中國(guó)Janus激酶(JAK)抑制劑行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- 水稻育秧合同范本
- 2025高考語(yǔ)文步步高大一輪復(fù)習(xí)講義教材文言文點(diǎn)線面答案精析
- 支氣管鏡的臨床應(yīng)用
- 《工程勘察設(shè)計(jì)收費(fèi)標(biāo)準(zhǔn)》(2002年修訂本)-工程設(shè)計(jì)收費(fèi)標(biāo)準(zhǔn)2002修訂版
- 2024-2030年中國(guó)眼部保健品行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- 中國(guó)成人失眠診斷與治療指南(2023版)解讀
- 知道網(wǎng)課智慧《設(shè)計(jì)創(chuàng)新思維》測(cè)試答案
- JT-T-1210.1-2018公路瀝青混合料用融冰雪材料第1部分:相變材料
- 解析德意志意識(shí)形態(tài)中的難解之謎生產(chǎn)關(guān)系概念與交往形式等術(shù)語(yǔ)的關(guān)系
評(píng)論
0/150
提交評(píng)論