版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山西省忻州市忻州一中2025屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在等差數(shù)列中,已知,,則使數(shù)列的前n項(xiàng)和成立時(shí)n的最小值為()A.6 B.7C.9 D.102.若方程表示圓,則實(shí)數(shù)m的取值范圍為()A B.C. D.3.直線在y軸上的截距是A. B.C. D.4.已知向量,,且,則值是()A. B.C. D.5.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線的右支上,且,則雙曲線離心率的取值范圍是()A. B.C. D.6.圓:與圓:的位置關(guān)系是()A.內(nèi)切 B.外切C.相交 D.相離7.直線與直線的位置關(guān)系是()A.相交但不垂直 B.平行C.重合 D.垂直8.已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則拋物線的準(zhǔn)線方程為()A. B.C. D.9.若函數(shù)恰好有個(gè)不同的零點(diǎn),則的取值范圍是()A. B.C. D.10.等差數(shù)列的公差,且,,則的通項(xiàng)公式是()A. B.C. D.11.設(shè)是等差數(shù)列的前n項(xiàng)和,若,,則()A.26 B.-7C.-10 D.-1312.已知雙曲線的離心率為5,則其標(biāo)準(zhǔn)方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列的前項(xiàng)和為,則數(shù)列的前2022項(xiàng)的和為_(kāi)__________.14.已知直線與圓交于A,B兩點(diǎn),過(guò)A,B分別做l的垂線與x軸交于C,D兩點(diǎn),若|AB|=4,則|CD|=_____________.15.已知數(shù)列滿足,則的前20項(xiàng)和___________.16.直線的傾斜角的大小是_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在△ABC中,角A,B,C所對(duì)的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀18.(12分)如圖,四棱錐中,平面,∥,,,為上一點(diǎn),平面(Ⅰ)求證:∥平面;(Ⅱ)若,求點(diǎn)D到平面EMC的距離19.(12分)已知橢圓的離心率為,右焦點(diǎn)為F,且E上一點(diǎn)P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點(diǎn),線段AB過(guò)點(diǎn)F,且其垂直平分線交x軸于H點(diǎn),,求20.(12分)直線經(jīng)過(guò)點(diǎn),且與圓相交與兩點(diǎn),截得的弦長(zhǎng)為,求的方程.21.(12分)在中,角的對(duì)邊分別為,已知,,且.(1)求角的大?。唬?)若,面積為,試判斷的形狀,并說(shuō)明理由.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)時(shí),求函數(shù)在內(nèi)的零點(diǎn)個(gè)數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)等差數(shù)列的性質(zhì)及等差中項(xiàng)結(jié)合前項(xiàng)和公式求得,,從而得出結(jié)論.【詳解】,,,,,,,使數(shù)列的前n項(xiàng)和成立時(shí)n的最小值為10,故選:D.2、D【解析】根據(jù),解不等式即可求解.【詳解】由方程表示圓,則,解得.所以實(shí)數(shù)m的取值范圍為.故選:D3、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.4、A【解析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【詳解】因?yàn)橄蛄?,,所以,,因?yàn)?,所以,解得:,故選:A.5、C【解析】根據(jù)雙曲線的定義求得,利用可得離心率范圍【詳解】因?yàn)?,又,所以,,又,即,,所以離心率故選:C6、A【解析】先計(jì)算兩圓心之間的距離,判斷距離和半徑和、半徑差之間的關(guān)系即可.【詳解】圓圓心,半徑,圓圓心,半徑,兩圓心之間的距離,故兩圓內(nèi)切.故選:A.7、C【解析】把直線化簡(jiǎn)后即可判斷.【詳解】直線可化為,所以直線與直線的位置關(guān)系是重合.故選:C8、C【解析】先求出橢圓的右焦點(diǎn),從而可求拋物線的準(zhǔn)線方程.【詳解】,橢圓右焦點(diǎn)坐標(biāo)為,故拋物線的準(zhǔn)線方程為,故選:C.【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),一般地,如果拋物線的方程為,則拋物線的焦點(diǎn)的坐標(biāo)為,準(zhǔn)線方程為,本題屬于基礎(chǔ)題.9、D【解析】分析可知,直線與函數(shù)的圖象有個(gè)交點(diǎn),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可求得實(shí)數(shù)的取值范圍.【詳解】令,可得,構(gòu)造函數(shù),其中,由題意可知,直線與函數(shù)的圖象有個(gè)交點(diǎn),,由,可得或,列表如下:增極大值減極小值增所以,,,作出直線與函數(shù)的圖象如下圖所示:由圖可知,當(dāng)時(shí),即當(dāng)時(shí),直線與函數(shù)的圖象有個(gè)交點(diǎn),即函數(shù)有個(gè)零點(diǎn).故選:D.10、C【解析】由于數(shù)列為等差數(shù)列,所以,再由可得可以看成一元二次方程的兩個(gè)根,由可知,所以,從而可求出,可得到通項(xiàng)公式.【詳解】解:因?yàn)閿?shù)列為等差數(shù)列,所以,因?yàn)?,所以可以看成一元二次方程的兩個(gè)根,因?yàn)?,所以,所以,解得,所以故選:C【點(diǎn)睛】此題考查的是等差數(shù)列的通項(xiàng)公式和性質(zhì),屬于基礎(chǔ)題.11、C【解析】直接利用等差數(shù)列通項(xiàng)和求和公式計(jì)算得到答案.【詳解】,,解得,故.故選:C.12、D【解析】雙曲線離心率公式和a、b、c的關(guān)系即可求得m,從而得到雙曲線的標(biāo)準(zhǔn)方程.【詳解】∵雙曲線,∴,又,∴,∵離心率為,∴,解得,∴雙曲線方程.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先設(shè)等差數(shù)列的公差為,根據(jù)題中條件,求出首項(xiàng)和公差,得出前項(xiàng)和,再由裂項(xiàng)相消的方法,即可求出結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,因?yàn)?,,所以,解得,因此,所以,所以?shù)列的前2022項(xiàng)的和為.故答案:.14、【解析】先求出圓心和半徑,由于半徑為2,弦|AB|=4,所以可知直線過(guò)圓心,從而得,求出,得到直線方程且傾斜角為135°,進(jìn)而可求出|CD|【詳解】圓,圓心(1,2),半徑r=2,∵|AB|=4,∴直線過(guò)圓心(1,2),∴,∴,∴直線,傾斜角為135°,∵過(guò)A,B分別做l的垂線與x軸交于C,D兩點(diǎn),∴.故答案為:4【點(diǎn)睛】此題考查直線與圓的位置關(guān)系,考查兩直線的位置關(guān)系,考查轉(zhuǎn)化思想和計(jì)算能力,屬于基礎(chǔ)題15、135【解析】直接利用數(shù)列的遞推關(guān)系式寫(xiě)出相鄰四項(xiàng)之和,進(jìn)而求出數(shù)列的和.【詳解】數(shù)列滿足,所以,故,當(dāng)時(shí),,當(dāng)時(shí),,,當(dāng)時(shí),,所以.故答案為:135.16、【解析】由題意,即,∴考點(diǎn):直線的傾斜角.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)等邊三角形【解析】(1)把化為,然后由正弦定理化邊為角,利用兩角和的正弦公式、誘導(dǎo)公式可求得;(2)由余弦定理及三角形面積公式可得,從而得出三角形為等邊三角形【小問(wèn)1詳解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小問(wèn)2詳解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以該三角形為等邊三角形18、(Ⅰ)證明見(jiàn)解析;(Ⅱ)【解析】(Ⅰ)運(yùn)用線面平行的判定定理證明;(Ⅱ)借助體積相等建立方程求解即可【詳解】(Ⅰ)證明:取的中點(diǎn),連接,因?yàn)椋?,又因?yàn)槠矫?,所以,所以平面,因?yàn)槠矫?,所以∥,面,平?所以∥平面;(Ⅱ)因?yàn)槠矫?,面,所以平面平面,平面平?過(guò)點(diǎn)作直線,則平面,由已知平面,∥,,可得,又,所以為的中點(diǎn),在中,,在中,,,在中,,由等面積法知,所以,即點(diǎn)D到平面EMC的距離為.考點(diǎn):直線與平面的位置關(guān)系及運(yùn)用【易錯(cuò)點(diǎn)晴】本題考查的是空間的直線與平面平行的推證問(wèn)題和點(diǎn)到直線的距離問(wèn)題.解答時(shí),證明問(wèn)題務(wù)必要依據(jù)判定定理,因此線面的平行問(wèn)題一定要在所給的平面中找出一條直線與這個(gè)平面外的直線平行,敘述時(shí)一定要交代面外的線和面內(nèi)的線,這是許多學(xué)生容易忽視的問(wèn)題,也高考閱卷時(shí)最容易扣分的地方,因此在表達(dá)時(shí)一定要引起注意19、(1);(2)【解析】(1)根據(jù)離心率和最大距離建立等式即可求解;(2)根據(jù)弦長(zhǎng),求出直線方程,解出點(diǎn)的坐標(biāo)即可得解.【詳解】(1)橢圓的離心率為,右焦點(diǎn)為F,且E上一點(diǎn)P到F的最大距離3,所以,所以,所以橢圓E的方程;(2)A,B為橢圓E上的兩點(diǎn),線段AB過(guò)點(diǎn)F,且其垂直平分線交x軸于H點(diǎn),所以線段AB所在直線斜率一定存在,所以設(shè)該直線方程代入,整理得:,設(shè),,,整理得:,當(dāng)時(shí),線段中點(diǎn)坐標(biāo),中垂線方程:,;當(dāng)時(shí),線段中點(diǎn)坐標(biāo),中垂線方程:,,綜上所述:.20、或【解析】直線截圓得的弦長(zhǎng)為,結(jié)合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點(diǎn)到直線的距離公式列方程求出直線斜率,由點(diǎn)斜式可得結(jié)果.【詳解】設(shè)直線的方程為,即,因?yàn)閳A的半徑為5,截得的弦長(zhǎng)為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點(diǎn)睛】本題主要考查點(diǎn)到直線距離公式以及圓的弦長(zhǎng)的求法,求圓的弦長(zhǎng)有兩種方法:一是利用弦長(zhǎng)公式,結(jié)合韋達(dá)定理求解;二是利用半弦長(zhǎng),弦心距,圓半徑構(gòu)成直角三角形,利用勾股定理求解.21、(1);(2)為等邊三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,從而得角A;(2)由S△ABC=bcsinA=,可得bc=3,①;再由余弦定理a2=b2+c2﹣2bccosA可得b2+c2=6,②;聯(lián)立①②可求得b=c=,從而可判斷△ABC的形狀【詳解】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0∵0<B<π,∴sinB≠0,∴cosA=.∵0<A<π,∴A=(2)△ABC為等邊三角形,∵S△ABC=bcsinA=,即bcsin=,∴bc=3,①∵a2=b2+c2﹣2bccosA,A=,a=,∴b2+c2=6,②由①②得b=c=,∴△ABC為等邊三角形【點(diǎn)睛】本題考查三角形形狀的判斷,著重考查正弦定理與余弦定理的應(yīng)用,考查方程思想與運(yùn)算求解能力,屬于中檔題22、(1)當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.(2)0.【解析】(1)求得,對(duì)參數(shù)分類討論,即可由每種情況下的正負(fù)確定函數(shù)的單調(diào)性;(2)根據(jù)題意求得,利用進(jìn)行放縮,只需證即,再利用導(dǎo)數(shù)通過(guò)證明從而得到恒成立,則問(wèn)題得解.【小問(wèn)1詳解】以為,其定義域?yàn)?,又,故?dāng)時(shí),,在單調(diào)遞增;當(dāng)時(shí),令,可得,且令,解得,令,解得,故在單調(diào)遞增,在單調(diào)遞減.綜上所述:當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.【小問(wèn)2詳解】因?yàn)?,故可得,則,;下證恒成立,令,則,故在單調(diào)遞減
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度鞋類品牌跨界合作開(kāi)發(fā)合同3篇
- 城市交通擁堵治理解決方案合同
- 聊城2025年山東聊城江北水城旅游度假區(qū)教育事業(yè)單位選聘教師6人筆試歷年參考題庫(kù)附帶答案詳解
- 2025年度網(wǎng)絡(luò)安全軟件采購(gòu)合同范本3篇
- 泉州2025年福建南安市衛(wèi)生事業(yè)單位招聘編制內(nèi)衛(wèi)生類工作人員51人筆試歷年參考題庫(kù)附帶答案詳解
- 威海2025年山東威海市教育局直屬學(xué)校引進(jìn)急需緊缺人才73人筆試歷年參考題庫(kù)附帶答案詳解
- 嘉興2025年浙江嘉興市婦幼保健院招聘高層次人才(博士研究生)10人筆試歷年參考題庫(kù)附帶答案詳解
- 2025年度高速公路建設(shè)碎石采購(gòu)合同匯編3篇
- 2024年超白透明浮法玻璃項(xiàng)目可行性研究報(bào)告
- 2025年新院基礎(chǔ)運(yùn)營(yíng)費(fèi)綜合服務(wù)合同2篇
- 部編新改版語(yǔ)文一年級(jí)下冊(cè)《語(yǔ)文園地四》教學(xué)設(shè)計(jì)
- 2025年北京鐵路局集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 《藥品招商營(yíng)銷概論》課件
- 曙光磁盤(pán)陣列DS800-G10售前培訓(xùn)資料V1.0
- 寺廟祈福活動(dòng)方案(共6篇)
- 2025年病案編碼員資格證試題庫(kù)(含答案)
- 企業(yè)財(cái)務(wù)三年戰(zhàn)略規(guī)劃
- 2025新譯林版英語(yǔ)七年級(jí)下單詞表
- 提高膿毒性休克患者1h集束化措施落實(shí)率
- 山東省濟(jì)南市天橋區(qū)2024-2025學(xué)年八年級(jí)數(shù)學(xué)上學(xué)期期中考試試題
- 主播mcn合同模板
評(píng)論
0/150
提交評(píng)論