2023-2024學(xué)年安徽省黃山市屯溪區(qū)第二中學(xué)高三下期始考數(shù)學(xué)試題_第1頁
2023-2024學(xué)年安徽省黃山市屯溪區(qū)第二中學(xué)高三下期始考數(shù)學(xué)試題_第2頁
2023-2024學(xué)年安徽省黃山市屯溪區(qū)第二中學(xué)高三下期始考數(shù)學(xué)試題_第3頁
2023-2024學(xué)年安徽省黃山市屯溪區(qū)第二中學(xué)高三下期始考數(shù)學(xué)試題_第4頁
2023-2024學(xué)年安徽省黃山市屯溪區(qū)第二中學(xué)高三下期始考數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年安徽省黃山市屯溪區(qū)第二中學(xué)高三下期始考數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若等差數(shù)列的前項和為,且,,則的值為().A.21 B.63 C.13 D.842.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.83.設(shè)等差數(shù)列的前項和為,若,,則()A.21 B.22 C.11 D.124.設(shè)集合,則()A. B. C. D.5.已知雙曲線,點(diǎn)是直線上任意一點(diǎn),若圓與雙曲線的右支沒有公共點(diǎn),則雙曲線的離心率取值范圍是().A. B. C. D.6.某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計如圖中的條形圖,已知年的就醫(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,則該人年的儲畜費(fèi)用為()A.元 B.元 C.元 D.元7.?dāng)?shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實數(shù)λ的最大值為()A. B. C. D.8.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.9.在平面直角坐標(biāo)系中,已知是圓上兩個動點(diǎn),且滿足,設(shè)到直線的距離之和的最大值為,若數(shù)列的前項和恒成立,則實數(shù)的取值范圍是()A. B. C. D.10.半正多面體(semiregularsolid)亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.11.我國南北朝時的數(shù)學(xué)著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤12.已知且,函數(shù),若,則()A.2 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)z是純虛數(shù),則實數(shù)a=_____,|z|=_____.14.《易經(jīng)》是中國傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.15.3張獎券分別標(biāo)有特等獎、一等獎和二等獎.甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是__________.16.成都市某次高三統(tǒng)考,成績X經(jīng)統(tǒng)計分析,近似服從正態(tài)分布,且,若該市有人參考,則估計成都市該次統(tǒng)考中成績大于分的人數(shù)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線:與拋物線切于點(diǎn),直線:過定點(diǎn)Q,且拋物線上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線距離之和的最小值為.(1)求拋物線的方程及點(diǎn)的坐標(biāo);(2)設(shè)直線與拋物線交于(異于點(diǎn)P)兩個不同的點(diǎn)A、B,直線PA,PB的斜率分別為,那么是否存在實數(shù),使得?若存在,求出的值;若不存在,請說明理由.18.(12分)已知是遞增的等比數(shù)列,,且、、成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),,求數(shù)列的前項和.19.(12分)已知橢圓:()的左、右頂點(diǎn)分別為、,焦距為2,點(diǎn)為橢圓上異于、的點(diǎn),且直線和的斜率之積為.(1)求的方程;(2)設(shè)直線與軸的交點(diǎn)為,過坐標(biāo)原點(diǎn)作交橢圓于點(diǎn),試探究是否為定值,若是,求出該定值;若不是,請說明理由.20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)中,曲線:.(1)當(dāng)時,求與的交點(diǎn)的極坐標(biāo);(2)直線與曲線交于,兩點(diǎn),線段中點(diǎn)為,求的值.21.(12分)設(shè)等差數(shù)列的首項為0,公差為a,;等差數(shù)列的首項為0,公差為b,.由數(shù)列和構(gòu)造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設(shè),,請計算,,;(2)設(shè),,試求,的表達(dá)式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設(shè),,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.22.(10分)已知在中,角,,的對邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由已知結(jié)合等差數(shù)列的通項公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【詳解】解:因為,,所以,解可得,,,則.故選:B.【點(diǎn)睛】本題主要考查等差數(shù)列的通項公式及求和公式的簡單應(yīng)用,屬于基礎(chǔ)題.2.A【解析】

先將除A,B以外的兩人先排,再將A,B在3個空位置里進(jìn)行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進(jìn)行插空,有種,所以共有種.故選:A【點(diǎn)睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎(chǔ)題.3.A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計算量大大減少.4.C【解析】

解對數(shù)不等式求得集合,由此求得兩個集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點(diǎn)睛】本小題主要考查對數(shù)不等式的解法,考查集合交集的概念和運(yùn)算,屬于基礎(chǔ)題.5.B【解析】

先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點(diǎn),可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點(diǎn),則直線與直線的距離,∵圓與雙曲線的右支沒有公共點(diǎn),則,∴,即,又故的取值范圍為,故選:B.【點(diǎn)睛】本題主要考查了直線和雙曲線的位置關(guān)系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點(diǎn)得出是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.6.A【解析】

根據(jù)2018年的家庭總收人為元,且就醫(yī)費(fèi)用占得到就醫(yī)費(fèi)用,再根據(jù)年的就醫(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,得到年的就醫(yī)費(fèi)用,然后由年的就醫(yī)費(fèi)用占總收人,得到2019年的家庭總收人再根據(jù)儲畜費(fèi)用占總收人求解.【詳解】因為2018年的家庭總收人為元,且就醫(yī)費(fèi)用占所以就醫(yī)費(fèi)用因為年的就醫(yī)費(fèi)用比年的就醫(yī)費(fèi)用增加了元,所以年的就醫(yī)費(fèi)用元,而年的就醫(yī)費(fèi)用占總收人所以2019年的家庭總收人為而儲畜費(fèi)用占總收人所以儲畜費(fèi)用:故選:A【點(diǎn)睛】本題主要考查統(tǒng)計中的折線圖和條形圖的應(yīng)用,還考查了建模解模的能力,屬于基礎(chǔ)題.7.D【解析】

利用等差數(shù)列通項公式推導(dǎo)出λ,由d∈[1,2],能求出實數(shù)λ取最大值.【詳解】∵數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數(shù),∴d=1時,實數(shù)λ取最大值為λ.故選D.【點(diǎn)睛】本題考查實數(shù)值的最大值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.8.B【解析】

首先求得兩曲線的交點(diǎn)坐標(biāo),據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結(jié)合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項.【點(diǎn)睛】本題主要考查定積分的概念與計算,屬于中等題.9.B【解析】

由于到直線的距離和等于中點(diǎn)到此直線距離的二倍,所以只需求中點(diǎn)到此直線距離的最大值即可。再得到中點(diǎn)的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點(diǎn)到此直線距離的最大值的關(guān)系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設(shè)線段的中點(diǎn),則,在圓上,到直線的距離之和等于點(diǎn)到該直線的距離的兩倍,點(diǎn)到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點(diǎn)睛】本題考查了向量數(shù)量積,點(diǎn)到直線的距離,數(shù)列求和等知識,是一道不錯的綜合題.10.D【解析】

根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應(yīng)的正方體沿各棱的中點(diǎn)截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點(diǎn)截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點(diǎn)睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點(diǎn)得到,屬于中檔題.11.C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C12.C【解析】

根據(jù)分段函數(shù)的解析式,知當(dāng)時,且,由于,則,即可求出.【詳解】由題意知:當(dāng)時,且由于,則可知:,則,∴,則,則.即.故選:C.【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.二、填空題:本題共4小題,每小題5分,共20分。13.11【解析】

根據(jù)復(fù)數(shù)運(yùn)算法則計算復(fù)數(shù)z,根據(jù)復(fù)數(shù)的概念和模長公式計算得解.【詳解】復(fù)數(shù)z,∵復(fù)數(shù)z是純虛數(shù),∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點(diǎn)睛】此題考查復(fù)數(shù)的概念和模長計算,根據(jù)復(fù)數(shù)是純虛數(shù)建立方程求解,計算模長,關(guān)鍵在于熟練掌握復(fù)數(shù)的運(yùn)算法則.14.【解析】

觀察八卦中陰線和陽線的情況為3線全為陽線或全為陰線各一個,還有6個是1陰2陽和1陽2陰各3個。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰?!驹斀狻堪素灾嘘幘€和陽線的情況為3線全為陽線的一個,全為陰線的一個,1陰2陽的3個,1陽2陰的3個。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰。∴從8個卦中任取2卦,共有種可能,兩卦中共2陽4陰的情況有,所求概率為。故答案為:?!军c(diǎn)睛】本題考查古典概型,解題關(guān)鍵是確定基本事件的個數(shù)。本題不能受八卦影響,我們關(guān)心的是八卦中陰線和陽線的條數(shù),這樣才能正確地確定基本事件的個數(shù)。15.【解析】

利用排列組合公式進(jìn)行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【詳解】解:3張獎券分別標(biāo)有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有:種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是:故答案為:【點(diǎn)睛】本題主要考查古典概型的概率公式的應(yīng)用,是基礎(chǔ)題.16..【解析】

根據(jù)正態(tài)分布密度曲線性質(zhì),結(jié)合求得,即可得解.【詳解】根據(jù)正態(tài)分布,且,所以故該市有人參考,則估計成都市該次統(tǒng)考中成績大于分的人數(shù)為.故答案為:.【點(diǎn)睛】此題考查正態(tài)分布密度曲線性質(zhì)的理解辨析,根據(jù)曲線的對稱性求解概率,根據(jù)總?cè)藬?shù)求解成績大于114的人數(shù).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),(1,2);(2)存在,【解析】

(1)由直線恒過點(diǎn)點(diǎn)及拋物線C上的點(diǎn)到點(diǎn)Q的距離與到準(zhǔn)線的距離之和的最小值為,求出拋物線的方程,再由直線與拋物線相切,即可求得切點(diǎn)的坐標(biāo);(2)直線與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系,求得直線PA,PB的斜率,求出斜率之和為定值,即存在實數(shù)使得斜率之和為定值.【詳解】(1)由題意,直線變?yōu)?x+1-m(2y+1)=0,所以定點(diǎn)Q的坐標(biāo)為拋物線的焦點(diǎn)坐標(biāo),由拋物線C上的點(diǎn)到點(diǎn)Q的距離與到其焦點(diǎn)F的距離之和的最小值為,可得,解得或(舍去),故拋物線C的方程為又由消去y得,因為直線與拋物線C相切,所以,解得,此時,所以點(diǎn)P坐標(biāo)為(1,2)(2)設(shè)存在滿足條件的實數(shù),點(diǎn),聯(lián)立,消去x得,則,依題意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在實數(shù)=滿足條件.【點(diǎn)睛】本題主要考查拋物線方程的求解、及直線與圓錐曲線的位置關(guān)系的綜合應(yīng)用,解答此類題目,通常聯(lián)立直線方程與拋物線方程,應(yīng)用一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解,此類問題易錯點(diǎn)是復(fù)雜式子的變形能力不足,導(dǎo)致錯解,能較好的考查考生的邏輯思維能力、運(yùn)算求解能力、分析問題解決問題的能力等.18.(Ⅰ);(Ⅱ).【解析】

(Ⅰ)設(shè)等比數(shù)列的公比為,根據(jù)題中條件求出的值,結(jié)合等比數(shù)列的通項公式可得出數(shù)列的通項公式;(Ⅱ)求得,然后利用裂項相消法可求得.【詳解】(Ⅰ)設(shè)數(shù)列的公比為,由題意及,知.、、成等差數(shù)列成等差數(shù)列,,,即,解得或(舍去),.數(shù)列的通項公式為;(Ⅱ),.【點(diǎn)睛】本題考查等比數(shù)列通項的求解,同時也考查了裂項求和法,考查計算能力,屬于基礎(chǔ)題.19.(1)(2)是定值,且定值為2【解析】

(1)設(shè)出點(diǎn)坐標(biāo)并代入橢圓方程,根據(jù)列方程,求得的值,結(jié)合求得的值,進(jìn)而求得橢圓的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,求得點(diǎn)的橫坐標(biāo),聯(lián)立直線的方程和橢圓方程,求得,由此化簡求得為定值.【詳解】(1)已知點(diǎn)在橢圓:()上,可設(shè),即,又,且,可得橢圓的方程為.(2)設(shè)直線的方程為:,則直線的方程為.聯(lián)立直線與橢圓的方程可得:,由,可得,聯(lián)立直線與橢圓的方程可得:,即,即.即為定值,且定值為2.【點(diǎn)睛】本小題主要考查本小題主要考查橢圓方程的求法,考查橢圓中的定值問題的求解,考查直線和橢圓的位置關(guān)系,考查運(yùn)算求解能力,屬于中檔題.20.(1),;(2)【解析】

(1)依題意可知,直線的極坐標(biāo)方程為(),再對分三種情況考慮;(2)利用直線參數(shù)方程參數(shù)的幾何意義,求弦長即可得到答案.【詳解】(1)依題意可知,直線的極坐標(biāo)方程為(),當(dāng)時,聯(lián)立解得交點(diǎn),當(dāng)時,經(jīng)檢驗滿足兩方程,(易漏解之處忽略的情況)當(dāng)時,無交點(diǎn);綜上,曲線與直線的點(diǎn)極坐標(biāo)為,,(2)把直線的參數(shù)方程代入曲線,得,可知,,所以.【點(diǎn)睛】本題考查直線與曲線交點(diǎn)的極坐標(biāo)、利用參數(shù)方程參數(shù)的幾何意義求弦長,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運(yùn)算求解能力.21.(1)(2)詳見解析(3)29【解析】

(1)將,代入,可求出,,可代入求,,可求結(jié)果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論