版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖北省安陸第一中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列前項(xiàng)和為,若,則的公差為()A.4 B.3C.2 D.12.“中國剩余定理”又稱“孫子定理”.1852年英國來華傳教士偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.“中國剩余定理”講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將2至2021這2020個數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項(xiàng)數(shù)為()A. B.C. D.3.在空間直角坐標(biāo)系中,若,,則點(diǎn)B的坐標(biāo)為()A.(3,1,﹣2) B.(-3,1,2)C.(-3,1,-2) D.(3,-1,2)4.小王與小張二人參加某射擊比賽預(yù)賽的五次測試成績?nèi)缦卤硭荆O(shè)小王與小張成績的樣本平均數(shù)分別為和,方差分別為和,則()第一次第二次第三次第四次第五次小王得分(環(huán))910579小張得分(環(huán))67557A. B.C. D.5.已知平面法向量為,,則直線與平面的位置關(guān)系為A. B.C.與相交但不垂直 D.6.直線的一個方向向量為,則它的斜率為()A. B.C. D.7.命題“若,都是偶數(shù),則也是偶數(shù)”的逆否命題是A.若是偶數(shù),則與不都是偶數(shù)B.若是偶數(shù),則與都不是偶數(shù)C.若不是偶數(shù),則與不都是偶數(shù)D.若不是偶數(shù),則與都不是偶數(shù)8.已知,,,則點(diǎn)C到直線AB的距離為()A.3 B.C. D.9.某家庭準(zhǔn)備晚上在餐館吃飯,他們查看了兩個網(wǎng)站關(guān)于四家餐館的好評率,如下表所示,考慮每家餐館的總好評率,他們應(yīng)選擇()網(wǎng)站①評價人數(shù)網(wǎng)站①好評率網(wǎng)站②評價人數(shù)網(wǎng)站②好評率餐館甲100095%100085%餐館乙1000100%200080%餐館丙100090%100090%餐館丁200095%100085%A.餐館甲 B.餐館乙C.餐館丙 D.餐館丁10.已知直線過點(diǎn),當(dāng)直線與圓有兩個不同的交點(diǎn)時,其斜率的取值范圍是()A. B.C. D.11.?dāng)?shù)列是公差不為零的等差數(shù)列,為其前n項(xiàng)和.若對任意的,都有,則的值不可能是()A. B.2C. D.312.過雙曲線Ω:(a>0,b>0)右焦點(diǎn)F作x軸的垂線,與Ω在第一象限的交點(diǎn)為M,且直線AM的斜率大于2,其中A為Ω的左頂點(diǎn),則Ω的離心率的取值范圍為()A.(1,3) B.(3,+∞)C.(1,) D.(,+∞)二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在點(diǎn)處的切線方程為______14.若橢圓的長軸是短軸的2倍,且經(jīng)過點(diǎn),則橢圓的離心率為________.15.雙曲線上的一點(diǎn)到一個焦點(diǎn)的距離等于1,那么點(diǎn)到另一個焦點(diǎn)的距離為_________.16.若滿足約束條件,則的最大值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若存在實(shí)常數(shù)k和b,使得函數(shù)和對其公共定義域上的任意實(shí)數(shù)x都滿足:和恒成立,則稱此直線y=kx+b為和的“隔離直線”.已知函數(shù),.(1)證明函數(shù)在內(nèi)單調(diào)遞增;(2)證明和之間存在“隔離直線”,且b的最小值為-4.18.(12分)請分別確定滿足下列條件的直線方程(1)過點(diǎn)(1,0)且與直線x﹣2y﹣2=0垂直直線方程是(2)求與直線3x-4y+7=0平行,且在兩坐標(biāo)軸上截距之和為1的直線l的方程.19.(12分)已知橢圓(a>b>0)的右焦點(diǎn)為F2(3,0),離心率為e.(1)若e=,求橢圓的方程;(2)設(shè)直線y=kx與橢圓相交于A,B兩點(diǎn),M,N分別為線段AF2,BF2的中點(diǎn),若坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,且<e≤,求k的取值范圍.20.(12分)如圖,在三棱柱中,平面,,.(1)求證:平面;(2)點(diǎn)M在線段上,且,試問在線段上是否存在一點(diǎn)N,滿足平面,若存在求的值,若不存在,請說明理由?21.(12分)已知橢圓:,的左右焦點(diǎn),是雙曲線的左右頂點(diǎn),的離心率為,的離心率為,點(diǎn)在上,過點(diǎn)E和,分別作直線交橢圓于,和,點(diǎn),如圖.(1)求,的方程;(2)求證:直線和的斜率之積為定值;(3)求證:為定值.22.(10分)已知直線與直線交于點(diǎn).(1)求過點(diǎn)且平行于直線的直線的方程,并求出兩平行直線間的距離;(2)求過點(diǎn)并且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由已知,結(jié)合等差數(shù)列前n項(xiàng)和公式、通項(xiàng)公式列方程組求公差即可.詳解】由題設(shè),,解得.故選:A2、C【解析】由題設(shè)且,應(yīng)用不等式求的范圍,即可確定項(xiàng)數(shù).【詳解】由題設(shè),且,所以,可得且.所以此數(shù)列的項(xiàng)數(shù)為.故選:C3、C【解析】利用點(diǎn)的坐標(biāo)表示向量坐標(biāo),即可求解.【詳解】設(shè),,,所以,,,解得:,,,即.故選:C4、C【解析】根據(jù)圖表數(shù)據(jù)可以看出小王和小張的平均成績和成績波動情況.【詳解】解:從圖表中可以看出小王每次的成績均不低于小張,但是小王成績波動比較大,故設(shè)小王與小張成績的樣本平均數(shù)分別為和,方差分別為和.可知故選:C5、A【解析】.本題選擇A選項(xiàng).6、A【解析】根據(jù)的方向向量求得斜率.【詳解】且是直線的方向向量,.故選:A7、C【解析】命題的逆否命題是將條件和結(jié)論對換后分別否定,因此“若都是偶數(shù),則也是偶數(shù)”的逆否命題是若不是偶數(shù),則與不都是偶數(shù)考點(diǎn):四種命題8、D【解析】應(yīng)用空間向量的坐標(biāo)運(yùn)算求在上投影長及的模長,再應(yīng)用勾股定理求點(diǎn)C到直線AB的距離.【詳解】因?yàn)椋?,所以設(shè)點(diǎn)C到直線AB的距離為d,則故選:D9、D【解析】根據(jù)給定條件求出各餐館總好評率,再比較大小作答.【詳解】餐館甲的總好評率為:,餐館乙的總好評率為:,餐館丙的好評率為:,餐館丁的好評率為:,顯然,所以餐館丁的總好評率最高.故選:D10、A【解析】設(shè)直線方程,利用圓與直線的關(guān)系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【詳解】如下圖:設(shè)直線l的方程為即圓心為,半徑是1又直線與圓有兩個不同的交點(diǎn)故選:A11、A【解析】由已知建立不等式組,可求得,再對各選項(xiàng)逐一驗(yàn)證可得選項(xiàng).【詳解】解:因?yàn)閿?shù)列是公差不為零的等差數(shù)列,為其前n項(xiàng)和.對任意的,都有,所以,即,解得,則當(dāng)時,,不成立;當(dāng)時,,成立;當(dāng)時,,成立;當(dāng)時,,成立;所以的值不可能是,故選:A.12、B【解析】求點(diǎn)A和M的坐標(biāo),進(jìn)而表示斜率,可得,整理得b2>2ac+2a2,從而可解得離心率的范圍.【詳解】F(c,0),設(shè)M(c,yM),(yM>0)代入可解得yM=,A(-a,0),由于kAM>2,即,整理得b2>2ac+2a2,又b2=c2-a2,∴c2-a2>2ac+2a2,即c2-2ac-3a2>0,∴e2-2e-3>0,e<-1(舍)或e>3.答案:B【點(diǎn)睛】解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出、的值,利用點(diǎn)斜式可得出所求切線的方程.【詳解】因?yàn)椋瑒t,所以,,,故所求切線方程為,即.故答案為:.14、【解析】分類討論焦點(diǎn)在軸與焦點(diǎn)在軸兩種情況.【詳解】因?yàn)闄E圓經(jīng)過點(diǎn),當(dāng)焦點(diǎn)在軸時,可知,,所以,所以,當(dāng)焦點(diǎn)在軸時,同理可得.故答案為:15、【解析】首先將已知的雙曲線方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,然后根據(jù)雙曲線的定義知雙曲線上的點(diǎn)到兩個焦點(diǎn)的距離之差的絕對值為,即可求出點(diǎn)到另一個焦點(diǎn)的距離為17.考點(diǎn):雙曲線的定義.16、7【解析】畫出約束條件所表示的平面區(qū)域,結(jié)合圖象和直線在軸上的截距,確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解.【詳解】畫出不等式組所表示的平面區(qū)域,如圖所示,目標(biāo)函數(shù)可化為,當(dāng)直線過點(diǎn)點(diǎn)時,此時直線在軸上的截距最大,此時目標(biāo)函數(shù)取得最大值,又由,解得,即,所以目標(biāo)函數(shù)的最大值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】(1)由導(dǎo)數(shù)得出在上的單調(diào)性;(2)設(shè)和之間的隔離直線為y=kx+b,由題設(shè)條件得出對任意恒成立,再由二次函數(shù)的性質(zhì)求解即可.【小問1詳解】,當(dāng)時,在上單調(diào)遞增在內(nèi)單調(diào)遞增【小問2詳解】設(shè)和之間的隔離直線為y=kx+b則對任意恒成立,即對任意恒成立由對任意恒成立,得當(dāng)時,則有符合題意;當(dāng)時,則有對任意恒成立的對稱軸為又的對稱軸為即故和之間存在“隔離直線”,且b的最小值為-4.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:在解決問題一時,求了一階導(dǎo)得不了函數(shù)的單調(diào)性,再次求導(dǎo)得,進(jìn)而得出在恒成立,得在上的單調(diào)性.18、(1)2x+y﹣2=0(2)3x-4y-12=0【解析】(1)設(shè)與直線x﹣2y﹣2=0垂直的直線方程為2x+y+m=0,把(1,0)代入2x+y+m=0,解得m即得解(2)方法一:由題意知:可設(shè)l的方程為,求出l在x軸,y軸上的截距,由截距之和為1,解出m,代回求出直線方程;方法二:設(shè)直線方程為,由題意得,解出a,b即可.【小問1詳解】設(shè)與直線x﹣2y﹣2=0垂直的直線方程為2x+y+m=0,把(1,0)代入2x+y+m=0,可得2+m=0,解得m=﹣2所求直線方程為:2x+y﹣2=0【小問2詳解】方法一:由題意知:可設(shè)l的方程為,則l在x軸,y軸上的截距分別為.由知,.所以直線l的方程為:.方法二:顯然直線在兩坐標(biāo)軸上截距不為0,則設(shè)直線方程為,由題意得解得所以直線l的方程為:.即.19、(1);(2)【解析】(1)根據(jù)右焦點(diǎn)為F2(3,0),以及,求得a,b,c即可.(2)聯(lián)立,根據(jù)M,N分別為線段AF2,BF2中點(diǎn),且坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,易得OM⊥ON,則四邊形OMF2N為矩形,從而AF2⊥BF2,然后由0,結(jié)合韋達(dá)定理求解.【詳解】(1)由題意得c=3,,所以.又因?yàn)閍2=b2+c2,所以b2=3.所以橢圓的方程為.(2)由,得(b2+a2k2)x2-a2b2=0.設(shè)A(x1,y1),B(x2,y2),所以x1+x2=0,x1x2=,依題意易知,OM⊥ON,四邊形OMF2N為矩形,所以AF2⊥BF2.因?yàn)?x1-3,y1),(x2-3,y2),所以(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0.即,將其整理為k2==-1-.因?yàn)?lt;e≤,所以2≤a<3,12≤a2<18.所以k2≥,即k∈【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題第二問的關(guān)鍵是由O在以MN為直徑的圓上,即OM⊥ON,得到四邊形OMF2N為矩形,推出AF2⊥BF2,結(jié)合韋達(dá)定理得出斜率k與離心率e的關(guān)系.20、(1)證明見解析;(2)存在,的值為.【解析】(1)先證明,再證明,由線面垂直的判定定理求證即可;(2)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,求出平面的法向量,由平面,利用向量法能求出的值【詳解】(1)在三棱柱中,平面ABC,,.∴,,,∵,∴平面,∵平面,∴,∵,∴平面.(2)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,如圖,,,,,所以,,設(shè)平面的法向量,則,取,得,點(diǎn)M在線段上,且,點(diǎn)N在線段上,設(shè),,設(shè),則,,,即,解得,,,∵,∴,解得.∴的值為.21、(1):;:(2)證明見解析(3)證明見解析【解析】(1)利用待定系數(shù)法,根據(jù)條件先求曲線的方程,再求曲線的方程;(2)首先設(shè),表示直線和的斜率之積,即可求解定值;(3)首先表示直線與方程聯(lián)立消,利用韋達(dá)定理表示弦長,以及利用直線和的斜率關(guān)系,表示弦長,并證明為定值.【小問1詳解】由題設(shè)知,橢圓離心率為解得∴,∵橢圓的左右焦點(diǎn),是雙曲線的左右頂點(diǎn),∴設(shè)雙曲線:∴的離心率為解得.∴::;【小問2詳解】證明:∵點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 核磁科護(hù)理工作總結(jié)
- 教育培訓(xùn)行業(yè)工程師工作總結(jié)
- 電商供應(yīng)鏈管理總結(jié)
- 初中班主任工作感悟與反思
- 婚紗店前臺工作心得
- 教育科研行業(yè)教學(xué)改革建議
- 2024年度企事業(yè)單位聘用司機(jī)及車輛安全培訓(xùn)服務(wù)合同3篇
- 得壽山石默想語文閱讀理解
- 白鵝微課程設(shè)計(jì)
- 波形發(fā)生器的課程設(shè)計(jì)
- 部編版道德與法治九年級上冊每課教學(xué)反思
- 2024年全國高中數(shù)學(xué)聯(lián)賽北京賽區(qū)預(yù)賽一試試題(解析版)
- 2024重慶藝術(shù)統(tǒng)考美術(shù)專業(yè)一分一段表
- 綠化養(yǎng)護(hù)服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 跨境電商公共服務(wù)平臺項(xiàng)目招標(biāo)文件
- 河北省保定市2023-2024學(xué)年三年級上學(xué)期期末考試數(shù)學(xué)試卷
- 煤炭托盤合作協(xié)議書
- 2024年中國主軸產(chǎn)業(yè)深度分析、投資前景及發(fā)展趨勢預(yù)測(簡版報(bào)告)
- 房地產(chǎn)公司總經(jīng)理職位面試問題
- 大班春季班級工作計(jì)劃下學(xué)期
- 2023年廣東能源集團(tuán)校園招聘考試真題及答案
評論
0/150
提交評論