2025屆內(nèi)蒙古烏蘭察布集寧二中數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第1頁(yè)
2025屆內(nèi)蒙古烏蘭察布集寧二中數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第2頁(yè)
2025屆內(nèi)蒙古烏蘭察布集寧二中數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第3頁(yè)
2025屆內(nèi)蒙古烏蘭察布集寧二中數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第4頁(yè)
2025屆內(nèi)蒙古烏蘭察布集寧二中數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆內(nèi)蒙古烏蘭察布集寧二中數(shù)學(xué)高三第一學(xué)期期末質(zhì)量檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③2.若為虛數(shù)單位,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,圖中復(fù)平面內(nèi)點(diǎn)表示復(fù)數(shù),則表示復(fù)數(shù)的點(diǎn)是()A.E B.F C.G D.H3.已知集合,,若,則()A. B. C. D.4.在區(qū)間上隨機(jī)取一個(gè)數(shù),使直線與圓相交的概率為()A. B. C. D.5.下列四個(gè)圖象可能是函數(shù)圖象的是()A. B. C. D.6.設(shè)點(diǎn)是橢圓上的一點(diǎn),是橢圓的兩個(gè)焦點(diǎn),若,則()A. B. C. D.7.若函數(shù)有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的值為()A. B. C. D.8.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過(guò)計(jì)算機(jī)模擬在長(zhǎng)為10,寬為6的長(zhǎng)方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.9.已知分別為雙曲線的左、右焦點(diǎn),過(guò)的直線與雙曲線的左、右兩支分別交于兩點(diǎn),若,則雙曲線的離心率為()A. B.4 C.2 D.10.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,11.設(shè)是等差數(shù)列的前n項(xiàng)和,且,則()A. B. C.1 D.212.“幻方”最早記載于我國(guó)公元前500年的春秋時(shí)期《大戴禮》中.“階幻方”是由前個(gè)正整數(shù)組成的—個(gè)階方陣,其各行各列及兩條對(duì)角線所含的個(gè)數(shù)之和(簡(jiǎn)稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.45二、填空題:本題共4小題,每小題5分,共20分。13.某次足球比賽中,,,,四支球隊(duì)進(jìn)入了半決賽.半決賽中,對(duì)陣,對(duì)陣,獲勝的兩隊(duì)進(jìn)入決賽爭(zhēng)奪冠軍,失利的兩隊(duì)爭(zhēng)奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—?jiǎng)t隊(duì)獲得冠軍的概率為_(kāi)_____.14.已知△ABC得三邊長(zhǎng)成公比為2的等比數(shù)列,則其最大角的余弦值為_(kāi)____.15.割圓術(shù)是估算圓周率的科學(xué)方法,由三國(guó)時(shí)期數(shù)學(xué)家劉徽創(chuàng)立,他用圓內(nèi)接正多邊形面積無(wú)限逼近圓面積,從而得出圓周率.現(xiàn)在半徑為1的圓內(nèi)任取一點(diǎn),則該點(diǎn)取自其內(nèi)接正十二邊形內(nèi)部的概率為_(kāi)_______.16.若函數(shù)為奇函數(shù),則_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在最新公布的湖南新高考方案中,“”模式要求學(xué)生在語(yǔ)數(shù)外3門(mén)全國(guó)統(tǒng)考科目之外,在歷史和物理2門(mén)科目中必選且只選1門(mén),再?gòu)幕瘜W(xué)、生物、地理、政治4門(mén)科目中任選2門(mén),后三科的高考成績(jī)按新的規(guī)則轉(zhuǎn)換后計(jì)入高考總分.相應(yīng)地,高校在招生時(shí)可對(duì)特定專業(yè)設(shè)置具體的選修科目要求.雙超中學(xué)高一年級(jí)有學(xué)生1200人,現(xiàn)從中隨機(jī)抽取40人進(jìn)行選科情況調(diào)查,用數(shù)字1~6分別依次代表歷史、物理、化學(xué)、生物、地理、政治6科,得到如下的統(tǒng)計(jì)表:序號(hào)選科情況序號(hào)選科情況序號(hào)選科情況序號(hào)選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學(xué)規(guī)定:每個(gè)選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個(gè)選修班(當(dāng)且僅當(dāng)一門(mén)科目的選課班級(jí)總數(shù)為奇數(shù)時(shí),允許這門(mén)科目的1位老師只教1個(gè)班).已知雙超中學(xué)高一年級(jí)現(xiàn)有化學(xué)、生物科目教師每科各8人,用樣本估計(jì)總體,則化學(xué)、生物兩科的教師人數(shù)是否需要調(diào)整?如果需要調(diào)整,各需增加或減少多少人?(2)請(qǐng)創(chuàng)建列聯(lián)表,運(yùn)用獨(dú)立性檢驗(yàn)的知識(shí)進(jìn)行分析,探究是否有的把握判斷學(xué)生“選擇化學(xué)科目”與“選擇物理科目”有關(guān).附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門(mén)人文專業(yè)的招生簡(jiǎn)章中明確要求,僅允許選修了歷史科目,且在政治和地理2門(mén)中至少選修了1門(mén)的考生報(bào)名.現(xiàn)從雙超中學(xué)高一新生中隨機(jī)抽取3人,設(shè)具備高校專業(yè)報(bào)名資格的人數(shù)為,用樣本的頻率估計(jì)概率,求的分布列與期望.18.(12分)某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷(xiāo),規(guī)定凡在該超市購(gòu)物滿400元的顧客,均可獲得一次摸獎(jiǎng)機(jī)會(huì).摸獎(jiǎng)規(guī)則如下:獎(jiǎng)盒中放有除顏色不同外其余完全相同的4個(gè)球(紅、黃、黑、白).顧客不放回的每次摸出1個(gè)球,若摸到黑球則摸獎(jiǎng)停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).(1)求1名顧客摸球2次摸獎(jiǎng)停止的概率;(2)記X為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.19.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,建立極坐標(biāo)系.(1)設(shè)直線l的極坐標(biāo)方程為,若直線l與曲線C交于兩點(diǎn)A.B,求AB的長(zhǎng);(2)設(shè)M、N是曲線C上的兩點(diǎn),若,求面積的最大值.20.(12分)已知點(diǎn)和橢圓.直線與橢圓交于不同的兩點(diǎn),.(1)當(dāng)時(shí),求的面積;(2)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,當(dāng)為中點(diǎn)時(shí),求的值.21.(12分)在中,.(Ⅰ)求角的大?。唬á颍┤?,,求的值.22.(10分)已知函數(shù).(1)若關(guān)于的不等式的整數(shù)解有且僅有一個(gè)值,當(dāng)時(shí),求不等式的解集;(2)已知,若,使得成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項(xiàng).點(diǎn)睛:求三角函數(shù)式的最小正周期時(shí),要盡可能地化為只含一個(gè)三角函數(shù)的式子,否則很容易出現(xiàn)錯(cuò)誤.一般地,經(jīng)過(guò)恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.2、C【解析】

由于在復(fù)平面內(nèi)點(diǎn)的坐標(biāo)為,所以,然后將代入化簡(jiǎn)后可找到其對(duì)應(yīng)的點(diǎn).【詳解】由,所以,對(duì)應(yīng)點(diǎn).故選:C【點(diǎn)睛】此題考查的是復(fù)數(shù)與復(fù)平面內(nèi)點(diǎn)的對(duì)就關(guān)系,復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題.3、A【解析】

由,得,代入集合B即可得.【詳解】,,,即:,故選:A【點(diǎn)睛】本題考查了集合交集的含義,也考查了元素與集合的關(guān)系,屬于基礎(chǔ)題.4、C【解析】

根據(jù)直線與圓相交,可求出k的取值范圍,根據(jù)幾何概型可求出相交的概率.【詳解】因?yàn)閳A心,半徑,直線與圓相交,所以,解得所以相交的概率,故選C.【點(diǎn)睛】本題主要考查了直線與圓的位置關(guān)系,幾何概型,屬于中檔題.5、C【解析】

首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個(gè)單位而得到,因?yàn)闉槠婧瘮?shù),即可得到函數(shù)圖象關(guān)于對(duì)稱,即可排除A、D,再根據(jù)時(shí)函數(shù)值,排除B,即可得解.【詳解】∵的定義域?yàn)?,其圖象可由的圖象沿軸向左平移1個(gè)單位而得到,∵為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,∴的圖象關(guān)于點(diǎn)成中心對(duì)稱.可排除A、D項(xiàng).當(dāng)時(shí),,∴B項(xiàng)不正確.故選:C【點(diǎn)睛】本題考查函數(shù)的性質(zhì)與識(shí)圖能力,一般根據(jù)四個(gè)選擇項(xiàng)來(lái)判斷對(duì)應(yīng)的函數(shù)性質(zhì),即可排除三個(gè)不符的選項(xiàng),屬于中檔題.6、B【解析】∵∵∴∵,∴∴故選B點(diǎn)睛:本題主要考查利用橢圓的簡(jiǎn)單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關(guān)的問(wèn)題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫(huà)出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、長(zhǎng)軸、短軸等橢圓的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.7、D【解析】

推導(dǎo)出函數(shù)的圖象關(guān)于直線對(duì)稱,由題意得出,進(jìn)而可求得實(shí)數(shù)的值,并對(duì)的值進(jìn)行檢驗(yàn),即可得出結(jié)果.【詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對(duì)稱.若函數(shù)的零點(diǎn)不為,則該函數(shù)的零點(diǎn)必成對(duì)出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時(shí),令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時(shí),函數(shù)與函數(shù)的圖象有三個(gè)交點(diǎn),不合乎題意;②當(dāng)時(shí),,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則函數(shù)有且只有一個(gè)零點(diǎn).綜上所述,.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù),考查函數(shù)圖象對(duì)稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對(duì)參數(shù)的值進(jìn)行檢驗(yàn),考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.8、B【解析】

根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點(diǎn)睛】本題考查面積型幾何概型的問(wèn)題求解,屬基礎(chǔ)題.9、A【解析】

由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設(shè),得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是由向量數(shù)量積為0得出垂直關(guān)系,利用雙曲線的定義把雙曲線上的點(diǎn)到焦點(diǎn)的距離都用表示出來(lái),從而再由勾股定理建立的關(guān)系.10、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標(biāo)函數(shù)z=x+2y經(jīng)過(guò)C點(diǎn)時(shí),函數(shù)取得最小值,由解得C(2,1),目標(biāo)函數(shù)的最小值為:4目標(biāo)函數(shù)的范圍是[4,+∞).故選D.11、C【解析】

利用等差數(shù)列的性質(zhì)化簡(jiǎn)已知條件,求得的值.【詳解】由于等差數(shù)列滿足,所以,,.故選:C【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.12、B【解析】

計(jì)算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點(diǎn)睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、0.18【解析】

根據(jù)表中信息,可得勝C的概率;分類討論B或D進(jìn)入決賽,再計(jì)算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進(jìn)入決賽,B勝D的概率為,則A勝B的概率為;若D進(jìn)入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點(diǎn)睛】本題考查了獨(dú)立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.14、-【解析】試題分析:根據(jù)題意設(shè)三角形的三邊長(zhǎng)分別設(shè)為為a,2a,2a,∵2a>2a>a,∴2a所對(duì)的角為最大角,設(shè)為θ,則根據(jù)余弦定理得考點(diǎn):余弦定理及等比數(shù)列的定義.15、【解析】

求出圓內(nèi)接正十二邊形的面積和圓的面積,再用幾何概型公式求出即可.【詳解】半徑為1的圓內(nèi)接正十二邊形,可分割為12個(gè)頂角為,腰為1的等腰三角形,∴該正十二邊形的面積為,根據(jù)幾何概型公式,該點(diǎn)取自其內(nèi)接正十二邊形的概率為,故答案為:.【點(diǎn)睛】本小題主要考查面積型幾何概型的計(jì)算,屬于基礎(chǔ)題.16、-2【解析】

由是定義在上的奇函數(shù),可知對(duì)任意的,都成立,代入函數(shù)式可求得的值.【詳解】由題意,的定義域?yàn)?,是奇函數(shù),則,即對(duì)任意的,都成立,故,整理得,解得.故答案為:.【點(diǎn)睛】本題考查奇函數(shù)性質(zhì)的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)不需調(diào)整(2)列聯(lián)表見(jiàn)解析;有的把握判斷學(xué)生“選擇化學(xué)科目”與“選擇物理科目”有關(guān)(3)詳見(jiàn)解析【解析】

(1)可估計(jì)高一年級(jí)選修相應(yīng)科目的人數(shù)分別為120,2,推理得對(duì)應(yīng)開(kāi)設(shè)選修班的數(shù)目分別為15,1.推理知生物科目需要減少4名教師,化學(xué)科目不需要調(diào)整.(2)根據(jù)列聯(lián)表計(jì)算觀測(cè)值,根據(jù)臨界值表可得結(jié)論.(3)經(jīng)統(tǒng)計(jì),樣本中選修了歷史科目且在政治和地理2門(mén)中至少選修了一門(mén)的人數(shù)為12,頻率為.用頻率估計(jì)概率,則,根據(jù)二項(xiàng)分布概率公式可得分布列和數(shù)學(xué)期望.【詳解】(1)經(jīng)統(tǒng)計(jì)可知,樣本40人中,選修化學(xué)、生物的人數(shù)分別為24,11,則可估計(jì)高一年級(jí)選修相應(yīng)科目的人數(shù)分別為120,2.根據(jù)每個(gè)選修班最多編排50人,且盡量滿額編班,得對(duì)應(yīng)開(kāi)設(shè)選修班的數(shù)目分別為15,1.現(xiàn)有化學(xué)、生物科目教師每科各8人,根據(jù)每位教師執(zhí)教2個(gè)選修班,當(dāng)且僅當(dāng)一門(mén)科目的選課班級(jí)總數(shù)為奇數(shù)時(shí),允許這門(mén)科目的一位教師執(zhí)教一個(gè)班的條件,知生物科目需要減少4名教師,化學(xué)科目不需要調(diào)整.(2)根據(jù)表格中的數(shù)據(jù)進(jìn)行統(tǒng)計(jì)后,制作列聯(lián)表如下:選物理不選物理合計(jì)選化學(xué)19524不選化學(xué)61016合計(jì)251540則,有的把握判斷學(xué)生”選擇化學(xué)科目”與“選擇物理科目”有關(guān).(3)經(jīng)統(tǒng)計(jì),樣本中選修了歷史科目且在政治和地理2門(mén)中至少選修了一門(mén)的人數(shù)為12,頻率為.用頻率估計(jì)概率,則,分布列如下:01230.3430.4410.1890.021數(shù)學(xué)期望為.【點(diǎn)睛】本題主要考查了離散型隨機(jī)變量的期望與方差,考查獨(dú)立性檢驗(yàn),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.18、(1);(2)20.【解析】

(1)1名顧客摸球2次摸獎(jiǎng)停止,說(shuō)明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,1.分別求出取各個(gè)值時(shí)的概率,即可求出分布列和數(shù)學(xué)期望.【詳解】(1)1名顧客摸球2次摸獎(jiǎng)停止,說(shuō)明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,所以1名顧客摸球2次摸獎(jiǎng)停止的概率.(2)的可能取值為:0,10,20,30,1.,∴隨機(jī)變量X的分布列為:X01020301P數(shù)學(xué)期望.【點(diǎn)睛】本題主要考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,屬于中檔題.19、(1);(2)1.【解析】

(1)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(2),,由(1)通過(guò)計(jì)算得到,即最大值為1.【詳解】(1)將曲線C的參數(shù)方程化為普通方程為,即;再將,,代入上式,得,故曲線C的極坐標(biāo)方程為,顯然直線l與曲線C相交的兩點(diǎn)中,必有一個(gè)為原點(diǎn)O,不妨設(shè)O與A重合,即.(2)不妨設(shè),,則面積為當(dāng),即取時(shí),.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,三角形面積的最值問(wèn)題,是一道容易題.2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論