吳忠市重點中學2025屆數(shù)學高二上期末預測試題含解析_第1頁
吳忠市重點中學2025屆數(shù)學高二上期末預測試題含解析_第2頁
吳忠市重點中學2025屆數(shù)學高二上期末預測試題含解析_第3頁
吳忠市重點中學2025屆數(shù)學高二上期末預測試題含解析_第4頁
吳忠市重點中學2025屆數(shù)學高二上期末預測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吳忠市重點中學2025屆數(shù)學高二上期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數(shù),當自變量t由2變到2.5時,函數(shù)的平均變化率是()A.5.25 B.10.5C.5.5 D.112.已知,,,執(zhí)行如圖所示的程序框圖,輸出值為()A. B.C. D.3.在中國共產(chǎn)黨建黨100周年之際,廣安市某中學組織了“黨史知識競賽”活動,已知該校共有高中學生1000人,用分層抽樣的方法從該校高中學生中抽取一個容量為25的樣本參加活動,其中高二年級抽取了8人,則該校高二年級學生人數(shù)為()A.960 B.720C.640 D.3204.若命題“或”與命題“非”都是真命題,則A.命題與命題都是真命題B.命題與命題都是假命題C.命題是真命題,命題是假命題D.命題是假命題,命題是真命題5.設R,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.函數(shù)的導函數(shù)為,若已知圖象如圖,則下列說法正確的是()A.存在極大值點 B.在單調遞增C.一定有最小值 D.不等式一定有解7.在正方體中,AC與BD的交點為M.設則下列向量與相等的向量是()A. B.C. D.8.已知三棱錐,點分別為的中點,且,用表示,則等于()A. B.C. D.9.已知直線l的方向向量,平面α的一個法向量為,則直線l與平面α的位置關系是()A.平行 B.垂直C.在平面內 D.平行或在平面內10.已知數(shù)列滿足,且,,則()A. B.C. D.11.已知直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,則實數(shù)a的值為()A.﹣2 B.C.1 D.1或﹣212.直線在y軸上的截距為()A.-1 B.1C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),設,且函數(shù)有3個不同的零點,則實數(shù)k的取值范圍為___________.14.已知是等差數(shù)列,,,設,數(shù)列前n項的和為,則______15.設x,y滿足約束條件則的最大值為________16.如圖,某建筑物的高度,一架無人機上的儀器觀測到建筑物頂部的仰角為,地面某處的俯角為,且,則此無人機距離地面的高度為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為,,點在橢圓C上,且滿足(1)求橢圓C的標準方程;(2)設直線與橢圓C交于不同的兩點M,N,且(O為坐標原點).證明:總存在一個確定的圓與直線l相切,并求該圓的方程18.(12分)已知圓的半徑為,圓心在直線上,點在圓上.(1)求圓的標準方程;(2)若原點在圓內,求過點且與圓相切的直線方程.19.(12分)從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得.(1)求家庭的月儲蓄y對月收入x的線性回歸方程;(2)判斷變量x與y之間是正相關還是負相關;(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.附:線性回歸方程中,,,其中,為樣本平均值.20.(12分)已知O為坐標原點,雙曲線C:(,)的離心率為,點P在雙曲線C上,點,分別為雙曲線C的左右焦點,.(1)求雙曲線C的標準方程;(2)已知點,,設直線PA,PB的斜率分別為,.證明:為定值.21.(12分)已知直線方程為(1)若直線的傾斜角為,求的值;(2)若直線分別與軸、軸的負半軸交于、兩點,為坐標原點,求面積的最小值及此時直線的方程22.(10分)已知函數(shù),求函數(shù)在上的最大值與最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.2、A【解析】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),計算三個數(shù)判斷作答.【詳解】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),因,,,則,不成立,則,不成立,則,所以應輸出的x值為.故選:A3、D【解析】由分層抽樣各層成比例計算即可【詳解】設高二年級學生人數(shù)為,則,解得故選:D4、D【解析】因為非p為真命題,所以p為假命題,又p或q為真命題,所以q為真命題,選D.5、A【解析】根據(jù)不等式性質判斷即可.【詳解】若“”,則成立;反之,若,當,時,不一定成立.如,但.故“”是“”的充分不必要條件.故答案為:A.【點睛】本題考查充分條件、必要調價的判斷,考查不等式與不等關系,屬于基礎題.6、C【解析】根據(jù)圖象可得的符號,從而可得的單調區(qū)間,再對選項進行逐一分析判斷正誤得出答案.【詳解】由所給的圖象,可得當時,,當時,,當時,,當時,,可得在遞減,遞增;在遞減,在遞增,B錯誤,且知,所以存在極小值和,無極大值,A錯誤,同時無論是否存在,可得出一定有最小值,但是最小值不一定為負數(shù),故C正確,D錯誤.故選:C.7、C【解析】根據(jù)空間向量的運算法則,推出的向量表示,可得答案.【詳解】,故選:C.8、D【解析】連接,利用,化簡即可得到答案.【詳解】連接,如下圖.故選:D.9、D【解析】根據(jù)題意,結合線面位置關系的向量判斷方法,即可求解.【詳解】根據(jù)題意,因為,所以,所以直線l與平面α的位置關系是平行或在平面內故選:D10、A【解析】由已知兩個不等式,利用“兩邊夾”思想求得,然后利用累加法可求得【詳解】∵,∴,∴,又,∴,即,∴故選:A【點睛】本題考查數(shù)列的遞推式,由遞推式的特征,采用累加法求得數(shù)列的項.解題關鍵是利用“兩邊夾”思想求解11、B【解析】由題意,利用兩直線垂直的性質,兩直線垂直時,一次項對應系數(shù)之積的和等于0,計算求得a的值【詳解】∵直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故選:B12、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意畫出函數(shù)圖象,把函數(shù)有3個不同的零點的問題轉化為函數(shù)與函數(shù)有3個交點的問題,分為和時分類討論即可.【詳解】作出函數(shù)的圖象如下圖所示,要使函數(shù)有3個不同的零點,則函數(shù)和函數(shù)有三個交點,由已知得函數(shù)恒過點,當時,過點時,函數(shù)和函數(shù)有三個交點,將代入得,即,當時,與相切時,此時函數(shù)和函數(shù)有兩個交點,如圖所示,,設此時的切點為,則直線的斜率為,直線的方程為,將點代入得,解得,此時的斜率為,將逆時針旋轉至和平行時,即為的位置時,函數(shù)和函數(shù)有三個交點,此時,故的范圍為,綜上所述實數(shù)k的取值范圍為.故答案為:.14、-3033【解析】先求得,進而得到,再利用并項法求解.【詳解】解:因為是等差數(shù)列,且,,所以,解得,所以,則,所以,,,,.故答案為:-303315、1【解析】先作出可行域,由,得,作出直線,向下平移過點時,取得最大值,求出點坐標代入目標函數(shù)中可得答案【詳解】作出可行域如圖(圖中陰影部分),由,得,作出直線,向下平移過點時,取得最大值,由,得,即,所以的最大值為,故答案為:116、200【解析】在Rt△ABC中求得AC的值,△ACQ中由正弦定理求得AQ的值,在Rt△APQ中求得PQ的值【詳解】根據(jù)題意,可得Rt△ABC中,∠BAC=60°,BC=300,∴AC200;△ACQ中,∠AQC=45°+15°=60°,∠QAC=180°﹣45°﹣60°=75°,∴∠QCA=180°﹣∠AQC﹣∠QAC=45°,由正弦定理,得,解得AQ200,在Rt△APQ中,PQ=AQsin45°=200200m故答案為200【點睛】本題考查了解三角形的應用問題,考查正弦定理,三角形內角和問題,考查轉化化歸能力,是基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)理由見解析,圓的方程為.【解析】(1)根據(jù)給定條件可得,結合勾股定理、橢圓定義求出a,b得解.(2)聯(lián)立直線l與橢圓C的方程,利用給定條件求出k,m的關系,再求出原點O到直線l的距離即可推理作答.【小問1詳解】因,則,點在橢圓C上,則橢圓C的半焦距,,,因此,,解得,,所以橢圓C的標準方程是:.【小問2詳解】由消去y并整理得:,依題意,,設,,因,則,于是得,此時,,則原點O到直線l的距離,所以,存在以原點O為圓心,為半徑的圓與直線l相切,此圓的方程為.【點睛】思路點睛:涉及動直線與圓錐曲線相交滿足某個條件問題,可設直線方程為,再與圓錐曲線方程聯(lián)立結合已知條件探求k,m的關系,然后推理求解.18、(1)或(2)或【解析】(1)先設出圓的標準方程,利用點在圓上和圓心在直線上得到圓心坐標的方程組,進而求出圓的標準方程;(2)先利用原點在圓內求出圓的方程,設出切線方程,利用圓心到切線的距離等于半徑進行求解.【小問1詳解】解:設圓的標準方程為,由已知得,解得或,故圓的方程為或.【小問2詳解】解:因為,,且原點在圓內,故圓的方程為,則圓心為,半徑為,設切線為,即,則,解得或,故切線為或,即或即為所求.19、(1)=0.3x-0.4;(2)正相關;(3)1.7(千元).【解析】(1)由題意得到n=10,求得,進而求得,寫出回歸方程;.(2)由判斷;(3)將x=7代入回歸方程求解.【詳解】(1)由題意知n=10,,則,所以所求回歸方程為=0.3x-0.4.(2)因為,所以變量y的值隨x的值增加而增加,故x與y之間是正相關.(3)將x=7代入回歸方程可以預測該家庭的月儲蓄為=0.3×7-0.4=1.7(千元).20、(1)(2)證明見解析【解析】(1)根據(jù)題意和雙曲線的定義求出,結合離心率求出b,即可得出雙曲線的標準方程;(2)設,根據(jù)兩點的坐標即可求出、,化簡計算即可.【小問1詳解】由題知:由雙曲線的定義知:,又因為,所以,所以所以,雙曲線C的標準方程為小問2詳解】設,則因為,,所以,所以21、(1);(2)面積的最小值為,此時直線的方程為.【解析】(1)由直線的斜率和傾斜角的關系可求得的值;(2)求出點、的坐標,根據(jù)已知條件求出的取值范圍,求出的面積關于的表達式,利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論