版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆河南省長(zhǎng)葛市一中高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),則點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為()A. B.C. D.2.已知等差數(shù)列的前項(xiàng)和為,若,則()A B.C. D.3.已知:,直線l:,M為直線l上的動(dòng)點(diǎn),過(guò)點(diǎn)M作的切線MA,MB,切點(diǎn)為A,B,則四邊形MACB面積的最小值為()A.1 B.2C. D.44.圓截直線所得弦的最短長(zhǎng)度為()A.2 B.C. D.45.第24屆冬季奧林匹克運(yùn)動(dòng)會(huì),將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運(yùn)史上第一個(gè)舉辦過(guò)夏季奧林匹克運(yùn)動(dòng)會(huì)和冬季奧林匹克運(yùn)動(dòng)會(huì)的城市.根據(jù)安排,國(guó)家體育場(chǎng)(鳥(niǎo)巢)成為北京冬奧會(huì)開(kāi)、閉幕式的場(chǎng)館.國(guó)家體育場(chǎng)“鳥(niǎo)巢”的鋼結(jié)構(gòu)鳥(niǎo)瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是兩個(gè)“相似橢圓”(離心率相同的兩個(gè)橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長(zhǎng)軸一端點(diǎn)A和短軸一端點(diǎn)B分別向內(nèi)層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.6.等比數(shù)列中,,,則()A. B.C. D.7.直線與圓相切,則實(shí)數(shù)等于()A.或 B.或C.3或5 D.5或38.已知P是橢圓上的一點(diǎn),是橢圓的兩個(gè)焦點(diǎn)且,則的面積是()A. B.2C. D.19.已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則的值為()A. B.C. D.10.由于受疫情的影響,學(xué)校停課,同學(xué)們通過(guò)三種方式在家自主學(xué)習(xí),現(xiàn)學(xué)校想了解同學(xué)們對(duì)假期學(xué)習(xí)方式的滿意程度,收集如圖1所示的數(shù)據(jù);教務(wù)處通過(guò)分層抽樣的方法抽取4%的同學(xué)進(jìn)行滿意度調(diào)查,得到的數(shù)據(jù)如圖2.下列說(shuō)法錯(cuò)誤的是()A.樣本容量為240B.若,則本次自主學(xué)習(xí)學(xué)生的滿意度不低于四成C.總體中對(duì)方式二滿意學(xué)生約為300人D.樣本中對(duì)方式一滿意的學(xué)生為24人11.某路口人行橫道的信號(hào)燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時(shí)間為40秒.若一名行人來(lái)到該路口遇到紅燈,則至少需要等待18秒才出現(xiàn)綠燈的概率為()A B.C. D.12.在平面上給定相異兩點(diǎn),設(shè)點(diǎn)在同一平面上且滿足,當(dāng)且時(shí),點(diǎn)的軌跡是一個(gè)圓,這個(gè)軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱這個(gè)圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點(diǎn),為雙曲線的虛軸端點(diǎn),動(dòng)點(diǎn)滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.狄利克雷是十九世紀(jì)德國(guó)杰出的數(shù)學(xué)家,對(duì)數(shù)論、數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn).狄利克雷曾提出了“狄利克雷函數(shù)”.若,根據(jù)“狄利克雷函數(shù)”可求___________.14.若向量,且?jiàn)A角的余弦值為_(kāi)_______15.如圖,已知橢圓+y2=1的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),設(shè)過(guò)點(diǎn)F且不與坐標(biāo)軸垂直的直線交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,則點(diǎn)G橫坐標(biāo)的取值范圍為_(kāi)_______16.若向量,,,且向量,,共面,則______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓的左、右焦點(diǎn)分別是,,離心率,請(qǐng)?jiān)購(gòu)南旅鎯蓚€(gè)條件中選擇一個(gè)作為已知條件,完成下面的問(wèn)題:①橢圓C過(guò)點(diǎn);②以點(diǎn)為圓心,3為半徑的圓與以點(diǎn)為圓心,1為半徑的圓相交,且交點(diǎn)在橢圓C上(只能從①②中選擇一個(gè)作為已知)(1)求橢圓C的方程;(2)已知過(guò)點(diǎn)的直線l交橢圓C于M,N兩點(diǎn),點(diǎn)N關(guān)于x軸的對(duì)稱點(diǎn)為,且,M,三點(diǎn)構(gòu)成一個(gè)三角形,求證:直線過(guò)定點(diǎn),并求面積的最大值.18.(12分)已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù))(1)求的解析式及單調(diào)遞減區(qū)間;(2)若函數(shù)無(wú)零點(diǎn),求的取值范圍19.(12分)已知等差數(shù)列的前項(xiàng)和為,滿足,.(1)求數(shù)列的通項(xiàng)公式與前項(xiàng)和;(2)求的值.20.(12分)已知數(shù)列中,,().(1)求證:是等比數(shù)列,并求的通項(xiàng)公式;(2)數(shù)列滿足,求數(shù)列的前項(xiàng)和為.21.(12分)已知直線l經(jīng)過(guò)直線,的交點(diǎn)M(1)若直線l與直線平行,求直線l的方程;(2)若直線l與x軸,y軸分別交于A,兩點(diǎn),且M為線段AB的中點(diǎn),求的面積(其中O為坐標(biāo)原點(diǎn))22.(10分)如圖,正方體的棱長(zhǎng)為,分別是的中點(diǎn),點(diǎn)在棱上,().(Ⅰ)三棱錐的體積分別為,當(dāng)為何值時(shí),最大?最大值為多少?(Ⅱ)若平面,證明:平面平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】基本事件總數(shù),再利用列舉法求出點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件的個(gè)數(shù),由此能求出點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù)之和,基本事件總數(shù),點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件有:,,,,,,,,共8個(gè),則點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為故選:B2、B【解析】利用等差數(shù)列的性質(zhì)可求得的值,再結(jié)合等差數(shù)列求和公式以及等差中項(xiàng)的性質(zhì)可求得的值.【詳解】由等差數(shù)列的性質(zhì)可得,則,故.故選:B.3、B【解析】易知四邊形MACB的面積為,然后由最小,根據(jù)與直線l:垂直求解.【詳解】:化為標(biāo)準(zhǔn)方程為:,由切線長(zhǎng)得:,四邊形MACB的面積為,若四邊形MACB的面積最小,則最小,此時(shí)與直線l:垂直,所以,所以四邊形MACB面積的最小值,故選:B4、A【解析】由題知直線過(guò)定點(diǎn),且在圓內(nèi),進(jìn)而求解最值即可.【詳解】解:將直線化為,所以聯(lián)立方程得所以直線過(guò)定點(diǎn)將化為標(biāo)準(zhǔn)方程得,即圓心為,半徑為,由于,所以點(diǎn)在圓內(nèi),所以點(diǎn)與圓圓心間的距離為,所以圓截直線所得弦的最短長(zhǎng)度為故選:A5、C【解析】設(shè)內(nèi)層橢圓的方程為,可得外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結(jié)合題意求得,進(jìn)而求得離心率.【詳解】設(shè)內(nèi)層橢圓方程為,因?yàn)閮?nèi)外層的橢圓的離心率相同,可設(shè)外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,整理得,由,整理得,設(shè)切線的方程為,同理可得,因?yàn)閮汕芯€斜率之積等于,可得,可得,所以離心率為.故選:C.6、D【解析】設(shè)公比為,依題意得到方程,即可求出,再根據(jù)等比數(shù)列通項(xiàng)公式計(jì)算可得;【詳解】解:設(shè)公比為,因?yàn)椋?,所以,即,解得,所以;故選:D7、C【解析】先求出圓的圓心和半徑,再利用圓心到直線的距離等于半徑列方程可求得結(jié)果【詳解】由,得,則圓心為,半徑為2,因?yàn)橹本€與圓相切,所以,得,解得或,故選:C8、A【解析】設(shè),先求出m、n,再利用面積公式即可求解.【詳解】在中,設(shè),則,解得:.因?yàn)?,所以,所以的面積是.故選:A9、B【解析】根據(jù)題意得到得到答案.【詳解】橢圓焦點(diǎn)在軸上,且,故.故選:B.10、B【解析】利用扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖可求出結(jié)果【詳解】選項(xiàng)A,樣本容量為,該選項(xiàng)正確;選項(xiàng)B,根據(jù)題意得自主學(xué)習(xí)的滿意率,錯(cuò)誤;選項(xiàng)C,樣本可以估計(jì)總體,但會(huì)有一定的誤差,總體中對(duì)方式二滿意人數(shù)約為,該選項(xiàng)正確;選項(xiàng)D,樣本中對(duì)方式一滿意人數(shù)為,該選項(xiàng)正確.故選:B【點(diǎn)睛】本題主要考查了命題真假的判斷,考查扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題11、B【解析】由幾何概型公式求解即可.【詳解】紅燈持續(xù)時(shí)間為40秒,則至少需要等待18秒才出現(xiàn)綠燈的概率為,故選:B12、C【解析】先求動(dòng)點(diǎn)的軌跡方程,再根據(jù)面積的最大值求得,根據(jù)的面積最小值求,由此可求雙曲線的離心率.【詳解】設(shè),,,依題意得,即,兩邊平方化簡(jiǎn)得,所以動(dòng)點(diǎn)的軌跡是圓心為,半徑的圓,當(dāng)位于圓的最高點(diǎn)時(shí)的面積最大,所以,解得;當(dāng)位于圓的最左端時(shí)的面積最小,所以,解得,故雙曲線的離心率為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】由“狄利克雷函數(shù)”解析式,先求出,再根據(jù)指數(shù)函數(shù)的解析式求即可.【詳解】由題設(shè),,則.故答案:114、【解析】根據(jù)求解即可.【詳解】,故答案為:【點(diǎn)睛】本題主要考查了求空間中兩個(gè)向量的夾角,屬于基礎(chǔ)題.15、【解析】設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,求出線段的垂直平分線方程,可求得點(diǎn)的橫坐標(biāo),利用不等式的基本性質(zhì)可求得點(diǎn)的橫坐標(biāo)的取值范圍.【詳解】設(shè)直線的方程為,聯(lián)立,整理可得,因?yàn)橹本€過(guò)橢圓的左焦點(diǎn),所以方程有兩個(gè)不相等的實(shí)根設(shè)點(diǎn)、,設(shè)的中點(diǎn)為,則,,直線的垂直平分線的方程為,令,則.因?yàn)椋怨庶c(diǎn)的橫坐標(biāo)的取值范圍.故答案為:16、##【解析】由向量共面的性質(zhì)列出方程組求解即可.【詳解】因?yàn)?,,共面,所以存在?shí)數(shù)x,y,使得,得,解得∴故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析,【解析】(1)若選①,則由題意可得,解方程組求出,從而可求得橢圓方程,若選②,,再結(jié)合離心率和求出,從而可求得橢圓方程,(2)由題意設(shè)直線MN的方程為,設(shè),,,將直線方程代入橢圓方程中,消去,再利用根與系數(shù)的關(guān)系,表示出直線的方程,令,求出,結(jié)合前面的式子化簡(jiǎn)可得線過(guò)的定點(diǎn),表示出的面積,利用基本不等式可求得其最大值【小問(wèn)1詳解】若選①:由題意知,∴.所以橢圓C的方程為.若選②:設(shè)圓與圓相交于點(diǎn)Q.由題意知:.又因?yàn)辄c(diǎn)Q在橢圓上,所以,∴.又因?yàn)?,∴,?所以橢圓C的方程為.【小問(wèn)2詳解】由題易知直線MN斜率存在且不為0,因?yàn)椋试O(shè)直線MN方程為,設(shè),,,∴,∴,,因?yàn)辄c(diǎn)N關(guān)于x軸對(duì)稱點(diǎn)為,所以,所以直線方程為,令,∴.又,∴.所以直線過(guò)定點(diǎn),∴.當(dāng)且僅當(dāng),即時(shí),取等號(hào).所以面積的最大值為.18、(1)單調(diào)減區(qū)間為和;(2)的取值范圍為:或【解析】(1)先求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由兩直線垂直的條件,可得,求得的解析式,可得導(dǎo)數(shù),令導(dǎo)數(shù)小于0,可得減區(qū)間;(2)先求得,要使函數(shù)無(wú)零點(diǎn),即要在內(nèi)無(wú)解,亦即要在內(nèi)無(wú)解.構(gòu)造函數(shù),對(duì)其求導(dǎo),然后對(duì)進(jìn)行分類討論,運(yùn)用單調(diào)性和函數(shù)零點(diǎn)存在性定理,即可得到的取值范圍.【詳解】(1),又由題意有:,故.此時(shí),,由或,所以函數(shù)的單調(diào)減區(qū)間為和.(2),且定義域?yàn)?,要函?shù)無(wú)零點(diǎn),即要在內(nèi)無(wú)解,亦即要在內(nèi)無(wú)解.構(gòu)造函數(shù).①當(dāng)時(shí),在內(nèi)恒成立,所以函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)也單調(diào)遞減.又,所以在內(nèi)無(wú)零點(diǎn),在內(nèi)也無(wú)零點(diǎn),故滿足條件;②當(dāng)時(shí),⑴若,則函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)也單調(diào)遞減,在內(nèi)單調(diào)遞增.又,所以在內(nèi)無(wú)零點(diǎn);易知,而,故在內(nèi)有一個(gè)零點(diǎn),所以不滿足條件;⑵若,則函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.又,所以時(shí),恒成立,故無(wú)零點(diǎn),滿足條件;⑶若,則函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,在內(nèi)也單調(diào)遞增.又,所以在及內(nèi)均無(wú)零點(diǎn).又易知,而,又易證當(dāng)時(shí),,所以函數(shù)在內(nèi)有一零點(diǎn),故不滿足條件.綜上可得:的取值范圍為:或.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義、應(yīng)用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問(wèn)題、其中分類討論思想.本題覆蓋面廣,對(duì)考生計(jì)算能力要求較高,是一道難題,解答本題,準(zhǔn)確求導(dǎo)數(shù)是基礎(chǔ),恰當(dāng)分類討論是關(guān)鍵,易錯(cuò)點(diǎn)是分類討論不全面、不徹底、不恰當(dāng),或因復(fù)雜式子變形能力差,而錯(cuò)漏百出.本題能較好的考查考生的邏輯思維能力、基本計(jì)算能力、分類討論思想等19、(1),;(2).【解析】(1)設(shè)出等差數(shù)列的公差,借助前項(xiàng)和公式列式計(jì)算作答.(2)由(1)的結(jié)論借助裂項(xiàng)相消去求解作答.【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為,因,,則,解得,于是得,,所以數(shù)列的通項(xiàng)公式為,前項(xiàng)和.【小問(wèn)2詳解】由(1)知,,所以.20、(1)(2)【解析】由已知式子變形可得是以為首項(xiàng),為公比的等比數(shù)列,由等比數(shù)列的通項(xiàng)公式易得利用錯(cuò)位相減法,得到數(shù)列的前項(xiàng)和為解析:(1)由,()知,又,∴是以為首項(xiàng),為公比的等比數(shù)列,∴,∴(2),,兩式相減得,∴點(diǎn)睛:本題主要考查數(shù)列的證明,錯(cuò)位相減法等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力,轉(zhuǎn)化能力和計(jì)算能力.第一問(wèn)中將已知的遞推公式進(jìn)行變形,轉(zhuǎn)化為的形式來(lái)證明,還可以根據(jù)等比數(shù)列的定義來(lái)證明;第二問(wèn),將第一問(wèn)中得到的結(jié)論代入,先得到的表達(dá)式,利用錯(cuò)位相減法,即可得到數(shù)列的前項(xiàng)和為21、(1)(2)4【解析】(1)求出兩直線的交點(diǎn)M的坐標(biāo),設(shè)直線l的方程為代入點(diǎn)M的坐標(biāo)可得答案;(2)設(shè),,因?yàn)闉榫€段AB的中點(diǎn),可得,由的面積為可得答案.【小問(wèn)1詳解】由,得,所以點(diǎn)M坐標(biāo)為,因?yàn)?,則設(shè)直線l的方程為,又l過(guò)點(diǎn),代入得,故直線l方程為.【小問(wèn)2詳解】設(shè),,因?yàn)闉榫€段AB的中點(diǎn),則,所以,故,,則的面積為.22、(Ⅰ)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度數(shù)據(jù)中心機(jī)房租賃及IT設(shè)備租賃合同3篇
- 西安高新科技職業(yè)學(xué)院《非線性編輯》2023-2024學(xué)年第一學(xué)期期末試卷
- 溫州醫(yī)科大學(xué)《民法前沿問(wèn)題專論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度在線醫(yī)療咨詢用戶隱私保護(hù)合同3篇
- 二零二五年教室租賃及教育資源共享與校園環(huán)境維護(hù)協(xié)議3篇
- 二零二五年度道路交通事故預(yù)防責(zé)任合同書(shū)范本2篇
- 2024版建筑工程一切險(xiǎn)保險(xiǎn)合同
- 2024股權(quán)轉(zhuǎn)讓協(xié)議完整模板
- 唐山幼兒師范高等??茖W(xué)?!渡镄畔W(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024版光伏發(fā)電站鋪裝工程合同
- 綠色簡(jiǎn)潔商務(wù)匯總報(bào)告PPT模板課件
- 下肢皮牽引護(hù)理PPT課件(19頁(yè)P(yáng)PT)
- 臺(tái)資企業(yè)A股上市相關(guān)資料
- 電 梯 工 程 預(yù) 算 書(shū)
- 參會(huì)嘉賓簽到表
- 形式發(fā)票格式2 INVOICE
- 2.48低危胸痛患者后繼治療評(píng)估流程圖
- 人力資源管理之績(jī)效考核 一、什么是績(jī)效 所謂績(jī)效簡(jiǎn)單的講就是對(duì)
- 山東省醫(yī)院目錄
- 云南地方本科高校部分基礎(chǔ)研究
- 廢品管理流程圖
評(píng)論
0/150
提交評(píng)論