版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
北京朝陽陳經(jīng)綸中學2025屆高二數(shù)學第一學期期末學業(yè)水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某班級從5名同學中挑出2名同學進行大掃除,若小王和小張在這5名同學之中,則小王和小張都沒有被挑出的概率為()A. B.C. D.2.在中,、、所對的邊分別為、、,若,,,則()A. B.C. D.3.下列對動直線的四種表述不正確的是()A.與曲線C:可能相離,相切,相交B.恒過定點C.時,直線斜率是0D.時,直線的傾斜角是135°4.設是等差數(shù)列的前n項和,若,,則()A.26 B.-7C.-10 D.-135.設為坐標原點,直線與雙曲線的兩條漸近線分別交于兩點,若的面積為8,則的焦距的最小值為()A.4 B.8C.16 D.326.橢圓C:的焦點為,,點P在橢圓上,若,則的面積為()A.48 B.40C.28 D.247.設函數(shù),則()A.4 B.5C.6 D.78.已知向量與平行,則()A. B.C. D.9.某班新學期開學統(tǒng)計新冠疫苗接種情況,已知該班有學生45人,其中未完成疫苗接種的有5人,則該班同學的疫苗接種完成率為()A. B.C. D.10.拋物線的焦點為F,準線為l,點P是準線l上的動點,若點A在拋物線C上,且,則(O為坐標原點)的最小值為()A. B.C. D.11.為推動黨史學習教育各項工作扎實開展,營造“學黨史、悟思想、辦實事、開新局”的濃厚氛圍,某校黨委計劃將中心組學習、專題報告會、黨員活動日、主題班會、主題團日這五種活動分5個階段安排,以推動黨史學習教育工作的進行,若主題班會、主題團日這兩個階段相鄰,且中心組學習必須安排在前兩階段并與黨員活動日不相鄰,則不同的安排方案共有()A.10種 B.12種C.16種 D.24種12.拋物線有一條重要的性質(zhì):平行于拋物線的軸的光線,經(jīng)過拋物線上的一點反射后經(jīng)過它的焦點.反之,從焦點發(fā)出的光線,經(jīng)過拋物線上的一點反射后,反射光線平行于拋物線的軸.已知拋物線,從點發(fā)出一條平行于x軸的光線,經(jīng)過拋物線兩次反射后,穿過點,則光線從A出發(fā)到達B所走過的路程為()A.8 B.10C.12 D.14二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數(shù)是___________.14.古希臘數(shù)學家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的中心為原點,焦點,均在軸上,且,的面積為,則的標準方程為______15.數(shù)列滿足,,其前n項積為,則______16.若函數(shù)在處有極值,則的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C與橢圓有相同的焦點,且離心率為.(1)橢圓C的標準方程;(2)若橢圓C的兩個焦點,P是橢圓上的點,且,求的面積.18.(12分)已知圓,其圓心在直線上.(1)求的值;(2)若過點的直線與相切,求的方程.19.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠DAB=60°,PD⊥底面ABCD,點F為棱PD的中點,二面角的余弦值為.(1)求PD的長;(2)求異面直線BF與PA所成角的余弦值;(3)求直線AF與平面BCF所成角的正弦值.20.(12分)已知二次函數(shù).(1)若時,不等式恒成立,求實數(shù)a的取值范圍;(2)解關(guān)于x的不等式(其中).21.(12分)(1)已知命題p:;命題q:,若“”為真命題,求x的取值范圍(2)設命題p:;命題q:,若是的充分不必要條件,求實數(shù)a的取值范圍22.(10分)如圖,在四棱錐中,四邊形為平行四邊形,且,,三角形為等腰直角三角形,且,.(1)若點為棱的中點,證明:平面平面;(2)若平面平面,點為棱的中點,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】記另3名同學分別為a,b,c,應用列舉法求古典概型的概率即可.【詳解】記另3名同學分別為a,b,c,所以基本事件為,,(a,小王),(a,小張),,(b,小王),(b,小張),(c,小王),(c,小張),(小王,小張),共10種小王和小張都沒有被挑出包括的基本事件為,,,共3種,綜上,小王和小張都沒有挑出的概率為故選:B.2、B【解析】利用正弦定理,以及大邊對大角,結(jié)合正弦定理,即可求得.【詳解】根據(jù)題意,由正弦定理,可得:,解得,故可得或,由,可得,故故選:B.3、A【解析】根據(jù)過定點的直線系求出恒過點可判斷B,由點與圓的位置關(guān)系可判斷A,由直線方程可判斷CD.【詳解】直線可化為,令,,解得,,所以直線恒過定點,而該定點在圓C:內(nèi)部,所以必與該圓相交當時,直線方程為,故斜率為0,當時,直線方程為,故斜率為,傾斜角為135°.故選:A4、C【解析】直接利用等差數(shù)列通項和求和公式計算得到答案.【詳解】,,解得,故.故選:C.5、B【解析】因為,可得雙曲線的漸近線方程是,與直線聯(lián)立方程求得,兩點坐標,即可求得,根據(jù)的面積為,可得值,根據(jù),結(jié)合均值不等式,即可求得答案.【詳解】雙曲線的漸近線方程是直線與雙曲線的兩條漸近線分別交于,兩點不妨設為在第一象限,在第四象限聯(lián)立,解得故聯(lián)立,解得故面積為:雙曲線其焦距為當且僅當取等號的焦距的最小值:故選:B.【點睛】本題主要考查了求雙曲線焦距的最值問題,解題關(guān)鍵是掌握雙曲線漸近線的定義和均值不等式求最值方法,在使用均值不等式求最值時,要檢驗等號是否成立,考查了分析能力和計算能力,屬于中檔題.6、D【解析】根據(jù)給定條件結(jié)合橢圓定義求出,再判斷形狀計算作答.【詳解】橢圓C:的半焦距,長半軸長,由橢圓定義得,而,且,則有是直角三角形,,所以的面積為24.故選:D7、D【解析】求出函數(shù)的導數(shù),將x=1代入即可求得答案.【詳解】,故,故選:D.8、D【解析】根據(jù)兩向量平行可求得、的值,即可得出合適的選項.【詳解】由已知,解得,,則.故選:D.9、D【解析】利用古典概型的概率求解.【詳解】該班同學的疫苗接種完成率為故選:D10、D【解析】依題意得點坐標,作點關(guān)于的對稱點,則,求即為最小值【詳解】如圖所示:作點關(guān)于的對稱點,連接,設點,不妨設,由題意知,直線l方程為,則,得所以,得,所以由,當三點共線時取等號,又所以最小值為故選:D11、A【解析】對中心組學習所在的階段分兩種情況討論得解.【詳解】解:如果中心組學習在第一階段,主題班會、主題團日在第二、三階段,則其它活動有2種方法;主題班會、主題團日在第三、四階段,則其它活動有1種方法;主題班會、主題團日在第四、五階段,則其它活動有1種方法,則此時共有種方法;如果中心組學習在第二階段,則第一階段只有1種方法,后面的三個階段有種方法.綜合得不同的安排方案共有10種.故選:A12、C【解析】利用拋物線的定義求解.【詳解】如圖所示:焦點為,設光線第一次交拋物線于點,第二次交拋物線于點,過焦點F,準線方程為:,作垂直于準線于點,作垂直于準線于點,則,,,,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)二項展開式的通項公式,可知展開式中含的項,以及展開式中含的項,再根據(jù)組合數(shù)的運算即可求出結(jié)果.【詳解】解:由題意可得,展開式中含的項為,而展開式中含的項為,所以的系數(shù)為.故答案為:.14、【解析】利用待定系數(shù)法列出關(guān)于的方程解出即可得結(jié)果.【詳解】設的標準方程為,則解得所以的標準方程為故答案為:.15、【解析】根據(jù)數(shù)列的項的周期性,去求的值即可解決.【詳解】由,,可得,,,,,,由此可知數(shù)列的項具有周期性,且周期為4,第一周期內(nèi)的四項之積為1,所以數(shù)列的前2022項之積為故答案為:16、2或6【解析】由解析式得到導函數(shù),結(jié)合是函數(shù)極值點,即可求的值.【詳解】由,得,因為函數(shù)在處有極值,所以,即,解得2或6.經(jīng)檢驗,2或6滿足題意.故答案為:2或6.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意求出即可求解;(2)由橢圓的定義和三角形面積公式求解即可【小問1詳解】因為橢圓C與橢圓有相同的焦點,所以橢圓C的焦點,,,又,所以,,所以橢圓C的標準方程為.【小問2詳解】由,,得,,而,所以,所以18、(1)(2)或【解析】(1)將圓的一般方程化為標準方程,求出圓心,代入直線方程即可求解.(2)設直線的方程為:,利用圓心到直線的距離即可求解.【小問1詳解】圓的標準方程為:,所以,圓心為由圓心在直線上,得.所以,圓的方程為:【小問2詳解】由題意可知直線的斜率存在,設直線的方程為:,即由于直線和圓相切,得解得:所以,直線方程為:或.19、(1)(2)(3)【解析】(1)以為軸,為軸,軸與垂直,建立如圖所示的空間直角坐標系,寫出各點坐標,設,,由空間向量法求二面角,從而求得,得長;(2)由空間向量法求異面直線所成的角;(3)由空間向量法求線面角【小問1詳解】以為軸,為軸,軸與垂直,由于菱形中,軸是的中垂線,建立如圖坐標系,則,,,設,,,,設平面一個法向量為,則,令,則,,即,平面的一個法向量是,因為二面角余弦值為.所以,(負值舍去)所以;【小問2詳解】由(1),,,,所以異面直線BF與PA所成角的余弦值為【小問3詳解】由(1)平面的一個法向量為,又,,所以直線AF與平面BCF所成角的正弦值為20、(1)(2)答案見解析【解析】(1)當時將原不等式變形為,根據(jù)基本不等式計算即可;(2)將原不等式化為,求出參數(shù)a分別取值、、時的解集.【小問1詳解】不等式即為:,當時,不等式可變形為:,因為,當且僅當時取等號,所以,所以實數(shù)a的取值范圍是;【小問2詳解】不等式,即,等價于,轉(zhuǎn)化為;當時,因為,所以不等式的解集為;當時,因為,所以不等式的解集為;當時,因為,所以不等式的解集為;綜上所述,當時,不等式的解集為;當時,不等式的解集為;當時,不等式的解集為.21、(1)(2)【解析】根據(jù)復合命題的真值表知:p真q假;非q是非p的充分不必要條件,等價于p是q的充分不必要條件,等價于p是q的真子集【詳解】命題p:,即;命題,即;由于“”為真命題,則p真q假,從而由q假得,,所以x的取值范圍是命題p:,即命題q:,即由于是的充分不必要條件,則p是q的充分不必要條件即有,【點睛】本題考查了復合命題及其真假屬基礎題22、(1)證明見解析(2)【解析】(1)先證明,,進而證明平面,即可證明平面,從而證明平面平面.(2)以點為坐標原點,分別以,,所在直線為軸,軸
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度模特時尚品牌代言聘用合同-@-15
- 2025年度事業(yè)單位網(wǎng)絡安全管理員勞動合同范本3篇
- 二零二五年度內(nèi)墻涂料研發(fā)生產(chǎn)與品牌營銷承包合同
- 2025年度智能晾曬系統(tǒng)配套個人木工裝修合同3篇
- 2025年度個人閑置物品轉(zhuǎn)讓合同范本3篇
- 2025年度個人投資理財咨詢服務合同范本8篇
- 2025年度個人住房貸款質(zhì)押合同標準文本及貸款逾期處理規(guī)定3篇
- 2025年度個人房地產(chǎn)抵押借款合同電子簽名版
- 二零二五年度農(nóng)家樂民宿設施使用權(quán)轉(zhuǎn)讓合同4篇
- 2025年度個人股權(quán)收購與轉(zhuǎn)讓合同(資產(chǎn)重組版)3篇
- 射頻在疼痛治療中的應用
- 和平精英電競賽事
- 四年級數(shù)學豎式計算100道文檔
- “新零售”模式下生鮮電商的營銷策略研究-以盒馬鮮生為例
- 項痹病辨證施護
- 職業(yè)安全健康工作總結(jié)(2篇)
- 懷化市數(shù)字經(jīng)濟產(chǎn)業(yè)發(fā)展概況及未來投資可行性研究報告
- 07FD02 防空地下室電氣設備安裝
- 教師高中化學大單元教學培訓心得體會
- 彈簧分離問題經(jīng)典題目
- 部編版高中歷史中外歷史綱要(下)世界史導言課課件
評論
0/150
提交評論