版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆河北省邯鄲市大名縣、磁縣等六縣一中高一上數(shù)學(xué)期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)(,),若的圖像的任何一條對稱軸與x軸交點的橫坐標均不屬于區(qū)間,則的取值范圍是()A. B.C. D.2.對于任意的實數(shù),定義表示不超過的最大整數(shù),例如,,,那么“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.函數(shù)的最小值為()A. B.C. D.4.已知函數(shù)的零點在區(qū)間內(nèi),則()A.4 B.3C.2 D.15.設(shè),則()A. B.aC. D.6.若集合,則()A.或 B.或C.或 D.或7.把表示成,的形式,則的值可以是()A. B.C. D.8.計算(16A.-1 B.1C.-3 D.39.計算器是如何計算,,,,等函數(shù)值的?計算器使用的是數(shù)值計算法,其中一種方法是用容易計算的多項式近似地表示這些函數(shù),通過計算多項式的值求出原函數(shù)的值,如,,,其中.英國數(shù)學(xué)家泰勒(B.Taylor,1685-1731)發(fā)現(xiàn)了這些公式,可以看出,右邊的項用得越多,計算得出的和的值也就越精確.運用上述思想,可得到的近似值為()A.0.50 B.0.52C.0.54 D.0.5610.若圓上至少有三個不同的點到直線的距離為,則的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)的值域為,則的取值范圍是__________12.某地為踐行綠水青山就是金山銀山的理念,大力開展植樹造林.假設(shè)一片森林原來的面積為畝,計劃每年種植一些樹苗,且森林面積的年增長率相同,當(dāng)面積是原來的倍時,所用時間是年(1)求森林面積的年增長率;(2)到今年為止,森林面積為原來的倍,則該地已經(jīng)植樹造林多少年?(3)為使森林面積至少達到畝,至少需要植樹造林多少年(精確到整數(shù))?(參考數(shù)據(jù):,)13.____.14.設(shè)、、為的三個內(nèi)角,則下列關(guān)系式中恒成立的是__________(填寫序號)①;②;③15.一條從西向東的小河的河寬為3.5海里,水的流速為3海里/小時,如果輪船希望用10分鐘的時間從河的南岸垂直到達北岸,輪船的速度應(yīng)為______;16.某扇形的圓心角為2弧度,半徑為,則該扇形的面積為___________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,,(1)若,求向量與的夾角;(2)若函數(shù).求當(dāng)時函數(shù)的值域18.化簡求值(1);(2).19.如圖,某地一天從5~13時的溫度變化近似滿足(1)求這一天5~13時的最大溫差;(2)寫出這段曲線的函數(shù)解析式20.利用拉格朗日(法國數(shù)學(xué)家,1736-1813)插值公式,可以把二次函數(shù)表示成的形式.(1)若,,,,,把的二次項系數(shù)表示成關(guān)于f的函數(shù),并求的值域(此處視e為給定的常數(shù),答案用e表示);(2)若,,,,求證:.21.某快遞公司在某市的貨物轉(zhuǎn)運中心,擬引進智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本萬元.(1)若使每臺機器人的平均成本最低,問應(yīng)買多少臺?(2)現(xiàn)按(1)中的數(shù)量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀,經(jīng)實驗知,每臺機器人的日平均分揀量(單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大值時,用人數(shù)量比引進機器人前的用人數(shù)量最多可減少多少?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由已知得,,且,解之討論k,可得選項.【詳解】因為的圖像的任何一條對稱軸與x軸交點的橫坐標均不屬于區(qū)間,所以,所以,故排除A,B;又,且,解得,當(dāng)時,不滿足,當(dāng)時,符合題意,當(dāng)時,符合題意,當(dāng)時,不滿足,故C正確,D不正確,故選:C.【點睛】關(guān)鍵點睛:本題考查根據(jù)正弦型函數(shù)的對稱性求得參數(shù)的范圍,解決問題的關(guān)鍵在于運用整體代換的思想,建立關(guān)于的不等式組,解之討論可得選項.2、B【解析】根據(jù)充分必要性分別判斷即可.【詳解】若,則可設(shè),則,,其中,,,即“”能推出“”;反之,若,,滿足,但,,即“”推不出“”,所以“”是“”必要不充分條件,故選:B.3、B【解析】用二倍角公式及誘導(dǎo)公式將函數(shù)化簡,再結(jié)合二次函數(shù)最值即可求得最值.【詳解】由因為所以當(dāng)時故選:B4、B【解析】根據(jù)零點存在性定理即可判斷出零點所在的區(qū)間.【詳解】因為,,所以函數(shù)在區(qū)間內(nèi)有零點,所以.故選:B.5、C【解析】由求出的值,再由誘導(dǎo)公式可求出答案【詳解】因為,所以,所以,故選:C6、B【解析】根據(jù)補集的定義,即可求得的補集.【詳解】∵,∴或,故選:B【點睛】本小題主要考查補集的概念和運算,屬于基礎(chǔ)題.7、B【解析】由結(jié)合弧度制求解即可.【詳解】∵,∴故選:B8、B【解析】原式=故選B9、C【解析】根據(jù)新定義,直接計算取近似值即可.【詳解】由題意,故選:C10、D【解析】先整理圓的方程為可得圓心和半徑,再轉(zhuǎn)化問題為圓心到直線的距離小于等于,進而求解即可【詳解】由題,圓標準方程為,所以圓心為,半徑,因為圓上至少有三個不同點到直線的距離為,所以,所以圓心到直線的距離小于等于,即,解得,故選:D【點睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,考查圓的一般方程到圓的標準方程的轉(zhuǎn)化,考查數(shù)形結(jié)合思想二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意得12、(1);(2)5年;(3)17年.【解析】(1)設(shè)森林面積的年增長率為,則,解出,即可求解;(2)設(shè)該地已經(jīng)植樹造林年,則,解出的值,即可求解;(3)設(shè)為使森林面積至少達到畝,至少需要植樹造林年,則,再結(jié)合對數(shù)函數(shù)的公式,即可求解.【小問1詳解】解:設(shè)森林面積的年增長率為,則,解得【小問2詳解】解:設(shè)該地已經(jīng)植樹造林年,則,,解得,故該地已經(jīng)植樹造林5年【小問3詳解】解:設(shè)為使森林面積至少達到畝,至少需要植樹造林年,則,,,,即取17,故為使森林面積至少達到畝,至少需要植樹造林17年13、.【解析】本題直接運算即可得到答案.【詳解】解:,故答案為:.【點睛】本題考查指數(shù)冪的運算、對數(shù)的運算,是基礎(chǔ)題.14、②、③【解析】因為是的內(nèi)角,故,,從而,,,故選②、③.點睛:三角形中各角的三角函數(shù)關(guān)系,應(yīng)注意利用這個結(jié)論.15、15海里/小時【解析】先求出船的實際速度,再利用勾股定理得到輪船的速度.【詳解】設(shè)船的實際速度為,船速,水的流速,則海里/小時,∴海里/小時.故答案為:15海里/小時16、16【解析】利用扇形的面積S,即可求得結(jié)論【詳解】∵扇形的半徑為4cm,圓心角為2弧度,∴扇形的面積S16cm2,故答案為:16三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)首先求出的坐標,再根據(jù)數(shù)量積、向量夾角的坐標公式計算可得;(2)根據(jù)數(shù)量積的坐標公式、二倍角公式以及輔助角公式化簡函數(shù)解析式,再根據(jù)的取值范圍,求出的范圍,最后根據(jù)正弦函數(shù)的性質(zhì)計算可得;【小問1詳解】解:因為,當(dāng)時,,又.所以,,,所以,因為,所以向量與的夾角為.【小問2詳解】解:因為,,所以,當(dāng)時,,所以,則因此函數(shù)在時的值域為18、(1)109;(2).【解析】(1)利用指數(shù)冪運算和分數(shù)指數(shù)冪與根式的轉(zhuǎn)化,化簡求值即可;(2)利用對數(shù)運算性質(zhì)化簡求值即可.【詳解】解:(1)原式;(2)原式.19、(1)6攝氏度(2),【解析】(1)根據(jù)圖形即可得出答案;(2)根據(jù)可得函數(shù)的最值,從而求得,圖像為函數(shù)的半個周期,可求得,再利用待定系數(shù)法可求得,即可得解.【小問1詳解】解:由圖知,這段時間的最大溫差是攝氏度;【小問2詳解】解:由圖可以看出,從5~13時的圖象是函數(shù)的半個周期的圖象,所以,,因為,則,將,,,,代入,得,所以,可取,所以解析式為,20、(1);(2)證明見解析【解析】(1)根據(jù)已知寫出二次項系數(shù)后可得;;(2)注意到,因此可以在不等式兩邊同乘以分母后化簡不等式,然后比較可得(可作差或湊配證明)【小問1詳解】由題意又,所以即的值域是;【小問2詳解】因為,,,,所以,因為,,,,所以,所以,所以,因為,,,,所以,所以,所以,綜上,原不等式成立21、(1)300臺;(2)90人.【解析】(1)每臺機器人的平均成本為,化簡后利用基本不等式求最小值;(2)由(1)可知,引進300臺機器人,并根據(jù)分段函數(shù)求300臺機器人日分揀量的最大值,根據(jù)最大值求若人工分揀,所需人數(shù),再與30作差求解.【詳解】(1)由總成本,可得每臺機器人的平均成本.因為.當(dāng)且僅當(dāng),即時,等號成立.∴若使每臺機器人的平均成本最低,則應(yīng)買300臺.(2)引進機器人后,每臺機器人的日平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 優(yōu)惠合同協(xié)議的意義
- 全新電腦購銷意向
- 教官發(fā)展服務(wù)合同
- 公路工程招標文件的標準范本
- 育肥豬購銷協(xié)議
- 有機紗線購銷合同
- 招標文件范本搖號定標的合同條款
- 童裝采購合同
- 代理招商合作合同定制
- 個人工作保安全
- 曳引驅(qū)動乘客電梯安全風(fēng)險評價內(nèi)容與要求
- 護理疑難病例討論肺心病
- 耳硬化癥護理查房
- 浙江省義烏市六校聯(lián)考2024屆八年級物理第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析
- 北京市昌平區(qū)2023-2024學(xué)年七年級上學(xué)期期末生物試卷
- 消防員心理培訓(xùn)課件
- 【一例小兒支氣管肺炎的臨床護理個案分析2200字】
- 項目管理機構(gòu)及服務(wù)方案
- 蔬菜水果供貨服務(wù)方案
- 2023年高級電氣工程師年終總結(jié)及年后展望
- “源網(wǎng)荷儲”一體化項目(儲能+光伏+風(fēng)電)規(guī)劃報告
評論
0/150
提交評論