四川省成都實驗外國語學校2025屆高二上數(shù)學期末考試模擬試題含解析_第1頁
四川省成都實驗外國語學校2025屆高二上數(shù)學期末考試模擬試題含解析_第2頁
四川省成都實驗外國語學校2025屆高二上數(shù)學期末考試模擬試題含解析_第3頁
四川省成都實驗外國語學校2025屆高二上數(shù)學期末考試模擬試題含解析_第4頁
四川省成都實驗外國語學校2025屆高二上數(shù)學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省成都實驗外國語學校2025屆高二上數(shù)學期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù),則曲線在點處的切線方程為()A. B.C. D.2.設圓上的動點到直線的距離為,則的取值范圍是()A. B.C. D.3.若圓上恰有2個點到直線的距離為1,則實數(shù)的取值范圍為()A B.C. D.4.2021年6月17日9時22分,搭載神舟十二號載人飛船的長征二號F遙十二運載火箭,在酒泉衛(wèi)星發(fā)射中心點火發(fā)射.此后,神舟十二號載人飛船與火箭成功分離,進入預定軌道,并快速完成與“天和”核心艙的對接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個月,開展艙外維修維護,設備更換,科學應用載荷等一系列操作.已知神舟十二號飛船的運行軌道是以地心為焦點的橢圓,設地球半徑為R,其近地點與地面的距離大約是,遠地點與地面的距離大約是,則該運行軌道(橢圓)的離心率大約是()A. B.C. D.5.箱子中有5件產品,其中有2件次品,從中隨機抽取2件產品,設事件=“至少有一件次品”,則的對立事件為()A.至多兩件次品 B.至多一件次品C.沒有次品 D.至少一件次品6.在平面直角坐標系中,雙曲線C:的左焦點為F,過F且與x軸垂直的直線與C交于A,B兩點,若是正三角形,則C的離心率為()A. B.C. D.7.過橢圓的左焦點作弦,則最短弦的長為()A. B.2C. D.48.已知,,則下列結論一定成立的是()A. B.C. D.9.已知雙曲線的左、右焦點分別為,,過作圓的切線分別交雙曲線的左、右兩支于,,且,則雙曲線的漸近線方程為()A. B.C. D.10.設函數(shù)是定義在上的奇函數(shù),且,當時,有恒成立.則不等式的解集為()A. B.C. D.11.已知,若,是第二象限角,則=()A. B.5C. D.1012.下列求導運算正確的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的漸近線方程是____________14.在梯形中,,,.將梯形繞所在的直線旋轉一周而形成的曲面所圍成的幾何體的體積為______.15.如圖,在棱長為2的正方體中,點分別是棱的中點,是側面正方形內一點(含邊界),若平面,則線段長度的取值范圍是__________16.已知直線l的方向向量,平面的法向量,若,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:()的焦點為F,原點O關于點F的對稱點為Q,點關于點Q的對稱點,也在拋物線C上(1)求p的值;(2)設直線l交拋物線C于不同兩點A、B,直線、與拋物線C的另一個交點分別為M、N,,,且,求直線l的橫截距的最大值.18.(12分)已知點在拋物線()上,過點A且斜率為1直線與拋物線的另一個交點為B(1)求p的值和拋物線的焦點坐標;(2)求弦長19.(12分)已知數(shù)列滿足,,設.(1)證明數(shù)列為等比數(shù)列,并求通項公式;(2)設,求數(shù)列的前項和.20.(12分)已知橢圓的左、右頂點坐標分別是,,短軸長等于焦距.(1)求橢圓的方程;(2)若直線與橢圓相交于兩點,線段的中點為,求.21.(12分)已知函數(shù),.(1)當時,求函數(shù)的極值;(2)若存在,使不等式成立,求實數(shù)的取值范圍.22.(10分)已知點是橢圓上的一點,且橢圓的離心率.(1)求橢圓的標準方程;(2)兩動點在橢圓上,總滿足直線與的斜率互為相反數(shù),求證:直線的斜率為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】對函數(shù)求導,利用導數(shù)的幾何意義求出切線斜率即可計算作答.【詳解】依題意,,即有,而,則過點,斜率為1的直線方程為:,所以曲線在點處切線方程為.故選:D2、C【解析】求出圓心到直線距離,再借助圓的性質求出d的最大值與最小值即可.【詳解】圓的方程化為,圓心為,半徑為1,則圓心到直線的距離,即直線和圓相離,因此,圓上的動點到直線的距離,有,,即,即的取值范圍是:.故選:C3、A【解析】求得圓心到直線的距離,根據(jù)題意列出的不等關系式,即可求得的范圍.【詳解】因為圓心到直線的距離,故要滿足題意,只需,解得.故選:A.4、A【解析】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標系,設橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運行軌道長軸所在直線為x軸,地心F為右焦點建立平面直角坐標系,設橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A5、C【解析】利用對立事件的定義,分析即得解【詳解】箱子中有5件產品,其中有2件次品,從中隨機抽取2件產品,可能出現(xiàn):“兩件次品”,“一件次品,一件正品”,“兩件正品”三種情況根據(jù)對立事件的定義,事件=“至少有一件次品”其對立事件為:“兩件正品”,即”沒有次品“故選:C6、A【解析】設雙曲線半焦距為c,求出,由給定的正三角形建立等量關系,結合計算作答.【詳解】設雙曲線半焦距為c,則,而軸,由得,從而有,而是正三角形,即有,則,整理得,因此有,而,解得,所以C的離心率為.故選:A7、A【解析】求出橢圓的通徑,即可得到結果【詳解】過橢圓的左焦點作弦,則最短弦的長為橢圓的通徑:故選:A8、B【解析】根據(jù)不等式的同向可加性求解即可.【詳解】因為,所以,又,所以.故選:B.9、D【解析】直線的斜率為,計算,,利用余弦定理得到,化簡知,得到答案【詳解】由題意知直線的斜率為,,又,由雙曲線定義知,,.由余弦定理:,,即,即,解得.故雙曲線漸近線的方程為.故答案選D【點睛】本題考查了雙曲線的漸近線,與圓的關系,意在考查學生的綜合應用能力和計算能力.10、B【解析】根據(jù)當時,可知在上單調遞減,結合可確定在上的解集;根據(jù)奇偶性可確定在上的解集;由此可確定結果.【詳解】,當時,,在上單調遞減,,,在上的解集為,即在上的解集為;又為上的奇函數(shù),,為上的偶函數(shù),在上的解集為,即在上的解集為;當時,,不合題意;綜上所述:的解集為.故選:.【點睛】本題考查利用函數(shù)的單調性和奇偶性求解函數(shù)不等式的問題,關鍵是能夠通過構造函數(shù)的方式,確定所構造函數(shù)的單調性和奇偶性,進而根據(jù)零點確定不等式的解集.11、D【解析】先由誘導公式及同角函數(shù)關系得到,再根據(jù)誘導公式化簡,最后由二倍角公式化簡求值即可.【詳解】∵,∴,∵是第二象限角,∴,∴故選:D12、B【解析】根據(jù)基本初等函數(shù)的導數(shù)和求導法則判斷.【詳解】,,,,只有B正確.故選:B.【點睛】本題考查基本初等函數(shù)的導數(shù)公式,考查導數(shù)的運算法則,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由雙曲線的方程可知,,即可直接寫出其漸近線的方程.【詳解】由雙曲線的方程為,可知,;則雙曲線的漸近線方程為.故答案:.14、##【解析】畫出幾何體的直觀圖,利用已知條件,求解幾何體的體積即可【詳解】梯形ABCD:由題意可知空間幾何體的直觀圖如圖:旋轉體是底面半徑為1,高為2的圓柱,挖去一個相同底面高為1的圓錐,幾何體的體積為:故答案為:15、【解析】取的中點G,連接FG,BG,F(xiàn)B,由正方體的幾何特征,易證平面AEC//平面BFG,再根據(jù)是側面內一點(含邊界),且平面,得到點P在線段BG上運動,然后在等腰中求解.【詳解】如圖所示:取的中點G,連接FG,BG,F(xiàn)B,在正方體中,易得又因為平面BFG,平面BFG,所以平面BFG,同理證得平面BFG,又因為,所以平面AEC//平面BFG,因為是側面內一點(含邊界),且平面,所以點P線段BG上運動,如圖所示:在等腰中,作,且,所以,設點F到線段BG的距離為d,由等面積法得,解得,所以線段長度的取值范圍是,故答案為:16、【解析】由,可得∥,從而可得,代入坐標列方程可求出,從而可求出【詳解】因為直線l的方向向量,平面的法向量,,所以∥,所以存在唯一實數(shù),使,所以,所以,解得,所以,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)最大橫截距為.【解析】(1)首先寫出的坐標,根據(jù)對稱關系求出的坐標,帶入即可求出.(2)設直線l的方程為,帶入拋物線方程利用韋達定理,計算出直線l的橫截距的表達式從而求出其最大值.【詳解】(1)由題知,,故,代入C的方程得,∴;(2)設直線l的方程為,與拋物線C:聯(lián)立得,由題知,可設方程兩根為,,則,,(*)由得,∴,,又點M在拋物線C上,∴,化簡得,由題知M,A為不同兩點,故,,即,同理可得,∴,將(*)式代入得,即,將其代入解得,∴在時取得最大值,即直線l的最大橫截距為.18、(1),焦點坐標(2)【解析】(1)將點的坐標代入拋物線的方程,可求得的值,進而可得拋物線的焦點坐標;(2)寫出直線的方程,聯(lián)立直線與拋物線方程求得交點坐標,利用兩點之間的距離公式即可求解.【小問1詳解】因為點在拋物線上,所以,即所以拋物線的方程為,焦點坐標為;【小問2詳解】由已知得直線方程為,即由得,解得或所以,則19、(1)證明見解析,;(2).【解析】(1)計算可得出,根據(jù)等比數(shù)列的定義可得出數(shù)列為等比數(shù)列,確定該數(shù)列的首項和公比,可求得數(shù)列的通項公式,進而可求得數(shù)列的通項公式;(2)求得,利用錯位相減法可求得.【小問1詳解】證明:對任意的,,則,則,因為,則,,,以此類推可知,對任意的,,所以,,所以,數(shù)列是等比數(shù)列,且該數(shù)列的首項為,公比為,所以,,則.【小問2詳解】解:,則,,下式上式得.20、(1);(2).【解析】(1)由橢圓頂點可知,又短軸長等于焦距可知,求出,即可寫出橢圓方程(2)根據(jù)“點差法”可求直線的斜率,寫出直線方程,聯(lián)立橢圓方程可得,,代入弦長公式即可求解.【詳解】(1)依題意,解得.故橢圓方程為.(2)設的坐標分別為,,直線的斜率顯然存在,設斜率為,則,兩式相減得,整理得.因為線段的中點為,所以,所以直線的方程為,聯(lián)立,得,則,,故.【點睛】本題主要考查了橢圓的標準方程及簡單幾何性質,“點差法”,弦長公式,屬于中檔題.21、(1)函數(shù)在上遞增,在上遞減,極大值為,無極小值(2)【解析】(1)求出函數(shù)的導函數(shù),再根據(jù)導數(shù)的符號求得單調區(qū)間,再根據(jù)極值的定義即可得解;(2)若存在,使不等式成立,問題轉化為,令,,利用導數(shù)求出函數(shù)的最大值即可得出答案.【小問1詳解】解:當時,,則,當時,,當時,,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的極大值為,無極小值;【小問2詳解】解:若存在,使

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論