版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山東省肥城市高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若某群體中的成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.2.已知點,,若直線過點且與線段相交,則直線的斜率的取值范圍是()A. B.C. D.3.在等比數(shù)列中,,,則等于()A.90 B.30C.70 D.404.?dāng)?shù)列2,,9,,的一個通項公式可以是()A. B.C. D.5.若點在橢圓的外部,則的取值范圍為()A. B.C. D.6.拋物線的焦點坐標是()A. B.C. D.7.設(shè)數(shù)列的前項和為,若,,,則、、、中,最大的是()A. B.C. D.8.設(shè)變量滿足約束條件:,則的最小值()A. B.C. D.9.若傾斜角為的直線過兩點,則實數(shù)()A. B.C. D.10.橢圓C:的焦點為,,點P在橢圓上,若,則的面積為()A.48 B.40C.28 D.2411.已知拋物線的焦點恰為雙曲線的一個頂點,的另一頂點為,與在第一象限內(nèi)的交點為,若,則直線的斜率為()A. B.C. D.12.不等式的解集為()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則實數(shù)m的值是___________.14.?dāng)?shù)列滿足,,則___________.15.已知數(shù)列滿足,且,則______,數(shù)列的通項_____16.直線與直線的夾角大小等于_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的中心在原點,焦點在軸上,離心率等于,它的一個頂點恰好是拋物線的焦點.(1)求橢圓的標準方程;(2)已知直線與橢圓交于、兩點,、是橢圓上位于直線兩側(cè)的動點,且直線的斜率為,求四邊形面積的最大值.18.(12分)已知拋物線的焦點到準線的距離為,過點的直線與拋物線只有一個公共點.(1)求拋物線的方程;(2)求直線的方程.19.(12分)在四棱錐中,平面,,,,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求直線與平面所成角的正弦值.20.(12分)已知數(shù)列滿足,,且成等比數(shù)列(1)求的值和的通項公式;(2)設(shè),求數(shù)列的前項和21.(12分)在平面直角坐標系xOy中,已知橢圓E:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為.點P是橢圓上的一動點,且P在第一象限.記的面積為S,當(dāng)時,.(1)求橢圓E的標準方程;(2)如圖,PF1,PF2的延長線分別交橢圓于點M,N,記和的面積分別為S1和S2.(i)求證:存在常數(shù)λ,使得成立;(ii)求S2-S1的最大值.22.(10分)數(shù)列滿足,,.(1)證明:數(shù)列是等差數(shù)列;(2)設(shè),求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用對立事件概率公式可求得所求事件的概率.【詳解】由對立事件的概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.2、B【解析】直接利用兩點間的坐標公式和直線的斜率的關(guān)系求出結(jié)果【詳解】解:直線過點且斜率為,與連接兩點,的線段有公共點,由圖,可知,,當(dāng)時,直線與線段有交點故選:B3、D【解析】根據(jù)等比數(shù)列的通項公式即可求出答案.【詳解】設(shè)該等比數(shù)列的公比為q,則,則.故選:D4、C【解析】用檢驗法,由通項公式驗證是否符合數(shù)列各項,結(jié)合排除法可得【詳解】第一項為正數(shù),BD中求出第一項均為負數(shù),排除,而AC均滿足,A中,,排除A,C中滿足,,,故選:C5、B【解析】根據(jù)題中條件,得到,求解,即可得出結(jié)果.【詳解】因為點在橢圓的外部,所以,即,解得或.故選:B.6、C【解析】化為標準方程,利用焦點坐標公式求解.【詳解】拋物線的標準方程為,所以拋物線的焦點在軸上,且,所以,所以拋物線的焦點坐標為.故選:C7、C【解析】求出的表達式,解不等式可得結(jié)果.【詳解】由已知可得,故數(shù)列為等差數(shù)列,且公差為,所以,,令可得.因此,當(dāng)時,最大.故選:C.8、D【解析】如圖作出可行域,知可行域的頂點是A(-2,2)、B()及C(-2,-2),平移,當(dāng)經(jīng)過A時,的最小值為-8,故選D.9、A【解析】解方程即得解.【詳解】解:由題得.故選:A10、D【解析】根據(jù)給定條件結(jié)合橢圓定義求出,再判斷形狀計算作答.【詳解】橢圓C:的半焦距,長半軸長,由橢圓定義得,而,且,則有是直角三角形,,所以的面積為24.故選:D11、D【解析】根據(jù)題意,列出的方程組,解得,再利用斜率公式即可求得結(jié)果.【詳解】因為拋物線的焦點,由題可知;又點在拋物線上,故可得;又,聯(lián)立方程組可得,整理得,解得(舍)或,此時,又,故直線的斜率為.故選:D.12、A【解析】先將分式不等式轉(zhuǎn)化為一元二次不等式,然后求解即可【詳解】由,得,解得,所以原不等式的解集為,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】結(jié)合已知條件和空間向量的數(shù)量積的坐標公式即可求解.【詳解】因為,所以,解得.故答案為:.14、【解析】根據(jù)題中所給的遞推式得到數(shù)列具有周期性,進而得到結(jié)果.【詳解】根據(jù)題中遞推式知,可知數(shù)列具有周期性,周期為3,因為故故答案為:15、①.②.【解析】判斷出是等差數(shù)列,由此求得,利用累加法求得.【詳解】依題意,則,所以數(shù)列是以為首項,公差為的等差數(shù)列,所以,,當(dāng)時,,,也符合上式,所以.故答案為:;16、##【解析】根據(jù)直線的傾斜角可得答案.【詳解】直線是與軸平行的直線,直線的斜率為1,即與軸的夾角為角,故直線與直線的夾角大小等于.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)離心率的定義以及橢圓與拋物線焦點的關(guān)系,可以求出橢圓方程;(2)根據(jù)題意,可以利用鉛錘底水平高的方法求四邊形APBQ的面積,即是要利用韋達定理算出.【小問1詳解】由題意,即;拋物線,焦點為,故,所以橢圓C的標準方程為:.【小問2詳解】由題意作圖如下:設(shè)AB直線的方程為:,并設(shè)點,,聯(lián)立方程:得:,∴……①,……②,;由于A,B兩點在直線PQ的兩邊(如上圖),所以,即,將①②帶入得:,解得;即由題意直線PQ的方程為,聯(lián)立方程解得,,∴;將線段PQ看做鉛錘底,A,B兩點的橫坐標之差看做水平高,得四邊形APBQ的面積為:,當(dāng)且僅當(dāng)m=0時取最大值,而,所以的最大值為.18、(1);(2)或或.【解析】(1)根據(jù)給定條件結(jié)合p的幾何意義,直接求出p寫出方程作答.(2)直線l的斜率存在設(shè)出其方程,再與拋物線C的方程聯(lián)立,再討論計算,l斜率不存在時驗證作答.【小問1詳解】因拋物線的焦點到準線的距離為,于是得,所以拋物線的方程為.【小問2詳解】當(dāng)直線的斜率存在時,設(shè)直線為,由消去y并整理得:,當(dāng)時,,點是直線與拋物線唯一公共點,因此,,直線方程為,當(dāng)時,,此時直線與拋物線相切,直線方程為,當(dāng)直線的斜率不存在時,y軸與拋物線有唯一公共點,直線方程為,所以直線方程為為或或.19、(1)證明見解析;(2)證明見解析;(3).【解析】(1)根據(jù)給定條件證得即可推理作答.(2)由已知條件,以點A作原點建立空間直角坐標系,借助空間位置關(guān)系的向量證明即可作答.(3)利用(2)中信息,借助空間向量求直線與平面所成角的正弦值.【小問1詳解】在四棱錐中,因分別是的中點,則,因平面,平面,所以平面.【小問2詳解】在四棱錐中,平面,,以點A為原點,射線AB,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,則,而且,則,,設(shè)平面的法向量,由,令,得,又,因此有,所以平面.【小問3詳解】由(2)知,,令直線與平面所成角為,則有,所以直線與平面所成角的正弦值.20、(1);;(2)【解析】(1)由于,所以可得,再由成等比數(shù)列,列方程可求出,從而可求出的通項公式;(2)由(1)可得,然后利用錯位相減法求【詳解】解:(1)數(shù)列{an}滿足,所以,所以a2+a3=a1+a2+d,由于a1=1,a2=1,所以a2+a3=2+d,a8+a9=2+7d,且a1,a2+a3,a8+a9成等比數(shù)列,所以,整理得d=1或2(1舍去)故an+2=an+2,所以n奇數(shù)時,an=n,n為偶數(shù)時,an=n﹣1所以數(shù)列{an}的通項公式為(2)由于,所以所以T2n=b1+b2+...+b2n=﹣20×12+20×22﹣22×32+22×42+...+[﹣22n﹣2?(2n﹣1)2]+22n﹣2?(2n)2,=20×(22﹣12)+22×(42﹣32)+...+22n﹣2?[(2n)2﹣(2n﹣1)2]=20×3+22×7+...+22n﹣2?(4n﹣1)①,所以,②,①﹣②得:﹣3T2n=20×3+22×4+...+22n﹣2×4﹣22n×(4n﹣1),=3+4×﹣22n×(4n﹣1),=,所以21、(1)(2)(i)存在常數(shù),使得成立;(ii)的最大值為.【解析】(1)求點P的坐標,再利用面積和離心率,可以求出,然后就可以得到橢圓的標準方程;(2)設(shè)點的坐標和直線方程,聯(lián)立方程,解出的y坐標值與P的坐標之間的關(guān)系,求以焦距為底邊的三角形面積;利用均值定理當(dāng)且僅當(dāng)時取等號,求最大值.【小問1詳解】先求第一象限P點坐標:,所以P點的坐標為,所以,所以橢圓E的方程為【小問2詳解】設(shè),易知直線和直線的坐標均不為零,因為,所以設(shè)直線的方程為,直線的方程為,由所以,因為,,所以所以同理由所以,因為,,所以所以,因為,,(i)所以所以存在常數(shù),使得成立.(ii),當(dāng)且僅當(dāng),時取等號,所以的最大值為.22、(1)證明見解析;(2)【解析】(1)將的兩邊同除以,得到,由等差數(shù)列的定義,即可作出證明;(2)有(1)求出,利用錯位相減法即可求解數(shù)列的前項和.試題解析:(1)證明:由已知可得=+1,即-=1.所以是以=1為首項,1為公差的等差數(shù)列(2)由(1)得=1+(n-1)·1=n,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《珠寶玉石教程》課件
- 車輛租賃協(xié)議三篇
- 人力資源行業(yè)員工福利顧問工作總結(jié)
- 2003年海南高考語文真題及答案
- 水利行業(yè)的保安工作總結(jié)
- 2023-2024年企業(yè)主要負責(zé)人安全培訓(xùn)考試題附答案【培優(yōu)】
- 2023年-2024年項目部安全培訓(xùn)考試題【易錯題】
- 1000字的貧困申請書范文5篇
- 開題答辯概覽
- 電灼傷護理查房
- 智能化施工管理平臺
- 2024年國家能源集團江蘇電力有限公司招聘筆試參考題庫附帶答案詳解
- 江西省九江市2023-2024學(xué)年部編版九年級上學(xué)期期末歷史試題(含答案)
- 山東省濟南市2023-2024學(xué)年高三上學(xué)期期末學(xué)習(xí)質(zhì)量檢測物理試題(原卷版)
- 2024年新華人壽保險股份有限公司招聘筆試參考題庫含答案解析
- 能源托管服務(wù)投標方案(技術(shù)方案)
- 2024年新奧集團股份有限公司招聘筆試參考題庫含答案解析
- 乳頭混淆疾病演示課件
- 高速公路涉路施工許可技術(shù)審查指南(一)
- 海南物流行業(yè)發(fā)展趨勢分析報告
- 安全運維配置檢查
評論
0/150
提交評論