2025屆吉林省長春市第151中學數(shù)學高二上期末教學質量檢測模擬試題含解析_第1頁
2025屆吉林省長春市第151中學數(shù)學高二上期末教學質量檢測模擬試題含解析_第2頁
2025屆吉林省長春市第151中學數(shù)學高二上期末教學質量檢測模擬試題含解析_第3頁
2025屆吉林省長春市第151中學數(shù)學高二上期末教學質量檢測模擬試題含解析_第4頁
2025屆吉林省長春市第151中學數(shù)學高二上期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆吉林省長春市第151中學數(shù)學高二上期末教學質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒.若一名行人來到該路口遇到紅燈,則至少需要等待18秒才出現(xiàn)綠燈的概率為()A B.C. D.2.已知P是橢圓上的一點,是橢圓的兩個焦點且,則的面積是()A. B.2C. D.13.在三棱錐中,,,則異面直線PC與AB所成角的余弦值是()A. B.C. D.4.在條件下,目標函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.805.若函數(shù)既有極大值又有極小值,則實數(shù)a的取值范圍是()A. B.C. D.6.將正整數(shù)1,2,3,4,…按如圖所示的方式排成三角形數(shù)組,則第19行從左往右數(shù)第5個數(shù)是()A.381 B.361C.329 D.4007.在四棱錐P-ABCD中,底面ABCD,,,點E為PA的中點,,,,則點B到平面PCD的距離為()A. B.C. D.8.拋物線的準線方程為,則實數(shù)的值為()A. B.C. D.9.設直線,.若,則的值為()A.或 B.或C. D.10.下列有關命題的表述中,正確的是()A.命題“若是偶數(shù),則,都是偶數(shù)”的否命題是假命題B.命題“若為正無理數(shù),則也是無理數(shù)”的逆命題是真命題C.命題“若,則”的逆否命題為“若,則”D.若命題“”,“”均為假命題,則,均為假命題11.設函數(shù)是定義在上的函數(shù)的導函數(shù),有,若,,則,,的大小關系是()A. B.C. D.12.已知橢圓:的左、右焦點分別為、,為坐標原點,為橢圓上一點.與軸交于一點,,則橢圓C的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓的方程為,點是直線上的一個動點,過點作圓的兩條切線為切點,則四邊形面積的最小值為__________;直線__________過定點.14.若圓心坐標為圓被直線截得的弦長為,則圓的半徑為______.15.根據(jù)如下樣本數(shù)據(jù)34567402.5-0.50.5-2得到的回歸方程為若,則的值為___________.16.已知A(1,3),B(5,-2),點P在x軸上,則使|AP|-|BP|取最大值的點P的坐標是________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,分別是銳角內角,,的對邊,,.(1)求的值;(2)若的面積為,求的值.18.(12分)已知動圓過點,且與直線:相切(1)求動圓圓心的軌跡方程;(2)若過點且斜率的直線與圓心的軌跡交于兩點,求線段的長度19.(12分)記是等差數(shù)列的前項和,若.(1)求數(shù)列的通項公式;(2)求使成立的的最小值.20.(12分)設數(shù)列的前項和,且成等差數(shù)列.(1)求數(shù)列的通項公式;(2)記數(shù)列前項和,求使成立的的最小值21.(12分)2021年7月25日,在東京奧運會自行車公路賽中,奧地利數(shù)學女博士安娜·基秣崔天以3小時52分45秒的成績獲得冠軍,震驚了世界!廣大網(wǎng)友驚呼“學好數(shù)理化,走遍天下都不怕”.某市對中學生的體能測試成績與數(shù)學測試成績進行分析,并從中隨機抽取了200人進行抽樣分析,得到下表(單位:人):體能一般體能優(yōu)秀合計數(shù)學一般5050100數(shù)學優(yōu)秀4060100合計90110200(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.10的前提下認為“體能優(yōu)秀”還是“體能一般”與數(shù)學成績有關?(結果精確到小數(shù)點后兩位)(2)①現(xiàn)從抽取的數(shù)學優(yōu)秀的人中,按“體能優(yōu)秀”與“體能一般”這兩類進行分層抽樣抽取10人,然后,再從這10人中隨機選出4人,求其中至少有2人是“體能優(yōu)秀”的概率;②將頻率視為概率,以樣本估計總體,從該市中學生中隨機抽取10人參加座談會,記其中“體能優(yōu)秀”的人數(shù)為X,求X的數(shù)學期望和方差參考公式:,其中參考數(shù)據(jù):0.150.100.050.250.0102.0722.7063.8415.0246.63522.(10分)在數(shù)列中,,,數(shù)列滿足(1)求證:數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;(2)數(shù)列前項和為,且滿足,求的表達式;(3)令,對于大于的正整數(shù)、(其中),若、、三個數(shù)經(jīng)適當排序后能構成等差數(shù)列,求符合條件的數(shù)組.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由幾何概型公式求解即可.【詳解】紅燈持續(xù)時間為40秒,則至少需要等待18秒才出現(xiàn)綠燈的概率為,故選:B2、A【解析】設,先求出m、n,再利用面積公式即可求解.【詳解】在中,設,則,解得:.因為,所以,所以的面積是.故選:A3、A【解析】分別取、、的中點、、,連接、、、、,由題意結合平面幾何的知識可得、、或其補角即為異面直線PC與AB所成角,再由余弦定理即可得解.【詳解】分別取、、的中點、、,連接、、、、,如圖:由可得,所以,在,,可得由中位線的性質可得且,且,所以或其補角即為異面直線PC與AB所成角,在中,,所以異面直線AB與PC所成角的余弦值為.故選:A.【點睛】思路點睛:平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面直線的問題化歸為共面直線問題來解決,具體步驟如下:(1)平移:平移異面直線中的一條或兩條,作出異面直線所成的角;(2)認定:證明作出的角就是所求異面直線所成的角;(3)計算:求該角的值,常利用解三角形;(4)取舍:由異面直線所成的角的取值范圍是,當所作的角為鈍角時,應取它的補角作為兩條異面直線所成的角4、C【解析】首先畫出可行域,找到最優(yōu)解,得到關系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標函數(shù)取最大值時必過N點,則則(當且僅當時等號成立)故選:C5、B【解析】函數(shù)既有極大值又有極小值轉化為導函數(shù)在定義域上有兩個不同的零點.【詳解】因為既有極大值又有極小值,且,所以有兩個不等的正實數(shù)解,所以,且,解得,且.故選:B.6、C【解析】觀察規(guī)律可知,從第一行起,每一行最后一個數(shù)是連續(xù)的完全平方數(shù),據(jù)此容易得出答案.【詳解】由圖中數(shù)字排列規(guī)律可知:第1行從左往右最后1個數(shù)是,第2行從左往右最后1個數(shù)是,第3行從左往右最后1個數(shù)是,……第18行從左往右最后1個數(shù)為,第19行從左往右第5個數(shù)是故選:C.7、D【解析】為中點,連接,易得為平行四邊形,進而可知B到平面PCD的距離即為到平面PCD的距離,再由線面垂直的性質確定線線垂直,在直角三角形中應用勾股定理求相關線段長,即可得△為直角三角形,最后應用等體積法求點面距即可.【詳解】若為中點,連接,又E為PA的中點,所以,,又,,則且,所以為平行四邊形,即,又面,面,所以面,故B到平面PCD的距離,即為到平面PCD的距離,由底面ABCD,面ABCD,即,,,又,即,,則面,面,即,而,,,,易知:,在△中;在△中;在△中;綜上,,故,又,則.所以B到平面PCD的距離為.故選:D8、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準線方程為,所以.故選:B9、A【解析】由兩直線垂直可得出關于實數(shù)的等式,即可解得實數(shù)的值.【詳解】因為,則,解得或.故選:A.10、C【解析】對于選項A:根據(jù)偶數(shù)性質即可判斷;對于選項B:通過舉例即可判斷,對于選項C:利用逆否命題的概念即可判斷;對于選項D:根據(jù)且、或和非的關系即可判斷.【詳解】選項A:原命題的否命題為:若不是偶數(shù),則,不都是偶數(shù),若,都是偶數(shù),則一定是偶數(shù),從而原命題的否命題為真命題,故A錯誤;選項B:原命題的逆命題:若是無理數(shù),則也為正無理數(shù),當,即為無理數(shù),但是有理數(shù),故B錯誤;選項C:由逆否命題的概念可知,C正確;選項D:由為假命題可知,,至少有一個為假命題,由為假命題可知,和均為假命題,故為假命題,為真命題,故D錯誤.故選:C.11、C【解析】設,求導分析的單調性,又,,,即可得出答案【詳解】解:設,則,又因為,所以,所以在上單調遞增,又,,,因為,所以,所以.故選:C12、C【解析】由橢圓的性質可先求得,故可得,再由橢圓的定義得a,c的關系,故可得答案【詳解】,,又,,則,,則,,由橢圓的定義得,,,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據(jù)切線的相關性質將四邊形面積化為,即求出最小值即可,即圓心到直線的距離;又可得四點在以為直徑的圓上,且是兩圓的公共弦,設出點坐標,求出圓的方程可得直線方程,即可得出定點.詳解】由圓得圓心,半徑,由題意可得,在中,,,可知當垂直直線時,,所以四邊形的面積的最小值為,可得四點在以為直徑的圓上,且是兩圓的公共弦,設,則圓心為,半徑為,則該圓方程為,整理可得,聯(lián)立兩圓可得直線AB的方程為,即可得當時,,故直線過定點.故答案為:;.14、【解析】利用垂徑定理計算即可.【詳解】設圓的半徑為,則,得.故答案為:.15、-1.4##【解析】分別求出的值,即得到樣本中心點,根據(jù)樣本中心點一定在回歸直線上,可求得答案.【詳解】,則得到樣本中心點為,因為樣本中心點一定在回歸直線上,故,解得,故答案為:16、【解析】首先求得點A關于x軸的對稱點,然后數(shù)形結合結合直線方程求解點P的坐標即可.【詳解】點A(1,3)關于x軸的對稱點為A′(1,-3),如圖所示,連接A′B并延長交x軸于點P,即為所求直線A′B的方程是y+3=(x-1),即.令y=0,得x=13則點P的坐標是.【點睛】本題主要考查直線方程的應用,最值問題的求解,等價轉化的數(shù)學思想等知識,意在考查學生的轉化能力和計算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根據(jù)題意得到,再由關于角的余弦定理和整理化簡得,再由的面積,即可求出的值.【小問1詳解】由及正弦定理可得.【小問2詳解】由銳角中得,根據(jù)余弦定理可得,代入得,整理得,即,解得,,解得.18、(1);(2).【解析】(1)由題意分析圓心符合拋物線定義,然后求軌跡方程;(2)直接聯(lián)立方程組,求出弦長.【詳解】解:(1)圓過點,且與直線相切點到直線的距離等于由拋物線定義可知點的軌跡是以為焦點、以為準線的拋物線,依題意,設點的軌跡方程為,則,解得,所以,動圓圓心的軌跡方程是(2)依題意可知直線,設聯(lián)立,得,則,所以,線段的長度為【點睛】(1)待定系數(shù)法、代入法可以求二次曲線的標準方程;(2)“設而不求”是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問題.19、(1)(2)4【解析】(1)根據(jù)題意得,解方程得,進而得通項公式;(2)由題知,進而解不等式得或,再根據(jù)即可得答案.【小問1詳解】設等差數(shù)列的公差為,由得=0,由題意知,,解得,所以d=2所以.小問2詳解】解:由(1)可得,由可得,即,解得或,因為,所以,正整數(shù)的最小值為.20、(1).(2)10.【解析】(1)借助于將轉化為,進而得到數(shù)列為等比數(shù)列,通過首項和公比求得通項公式;(2)整理數(shù)列的通項公式,可知數(shù)列為等比數(shù)列,求得前n項和,代入不等式可求得n的最小值試題解析:(1)由已知,有,即從而又因為成等差數(shù)列,即所以,解得所以,數(shù)列是首項為2,公比為2的等比數(shù)列故(2)由(1)得.所以由,得,即因為,所以.于是,使成立的n的最小值為10考點:1.數(shù)列通項公式;2.等比數(shù)列求和21、(1)不能,理由見解析;(2)①,②,【解析】(1)運用公式求出,比較得出結論.(2)①先用分層抽樣得到“體能優(yōu)秀”與“體能一般”的人數(shù),再利用公式計算至少有2人是“體能優(yōu)秀”的概率.②根據(jù)已知條件知此分布列為二項分布,故利用數(shù)學期望和方差的公式即可求出答案【小問1詳解】由表格的數(shù)據(jù)可得,,故不能在犯錯誤的概率不超過0.10的前提下認為“體能優(yōu)秀”還是“體能一般”與數(shù)學成績有關.【小問2詳解】①在數(shù)學優(yōu)秀的人群中,“體能優(yōu)秀”與“體能一般”的比例為“體能一般”的人數(shù)為,“體能優(yōu)秀”的人數(shù)為故再從這10人中隨機選出4人,其中至少有2人是“體能優(yōu)秀”的概率為.②由題意可得,隨機抽取一人“體能優(yōu)秀”的概率為,且故,22、(1)證明見解析,;(2);(3).【解析】(1)由已知等式變形可得,利用等比數(shù)列的定義可證得結論成立,確定等比數(shù)列的首項和公比,可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論