版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆山東省濱州市十二校聯(lián)考數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.?dāng)?shù)列的一個(gè)通項(xiàng)公式為()A. B.C. D.2.已知雙曲線的離心率為2,且與橢圓有相同的焦點(diǎn),則該雙曲線的漸近線方程為()A. B.C. D.3.已知拋物線上一點(diǎn)到焦點(diǎn)的距離為3,準(zhǔn)線為l,若l與雙曲線的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.C. D.4.已知隨機(jī)變量X的分布列如表所示,則()X123Pa2a3aA. B.C. D.5.設(shè)、是橢圓:的左、右焦點(diǎn),為直線上一點(diǎn),是底角為的等腰三角形,則的離心率為A. B.C. D.6.若橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,則橢圓的離心率為()A. B.C. D.7.《西游記》《三國(guó)演義》《水滸傳》和《紅樓夢(mèng)》是中國(guó)古典文學(xué)瑰寶,并稱為中國(guó)古典小說(shuō)四大名著.某中學(xué)為了解本校學(xué)生閱讀四大名著的情況,隨機(jī)調(diào)查了100學(xué)生,其中閱讀過(guò)《西游記》或《紅樓夢(mèng)》的學(xué)生共有90位,閱讀過(guò)《紅樓夢(mèng)》的學(xué)生共有80位,閱讀過(guò)《西游記》且閱讀過(guò)《紅樓夢(mèng)》的學(xué)生共有60位,則該校閱讀過(guò)《西游記》的學(xué)生人數(shù)與該校學(xué)生總數(shù)比值的估計(jì)值為A. B.C. D.8.用數(shù)學(xué)歸納法證明時(shí),第一步應(yīng)驗(yàn)證不等式()A. B.C. D.9.已知函數(shù)的導(dǎo)函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A. B.C. D.10.若曲線f(x)=x2的一條切線l與直線平行,則l的方程為()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=011.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.8 B.16C. D.12.已知雙曲線的左、右焦點(diǎn)分別為,過(guò)點(diǎn)的直線與圓相切于點(diǎn),交雙曲線的右支于點(diǎn),且點(diǎn)是線段的中點(diǎn),則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校組織了一場(chǎng)演講比賽,五位評(píng)委對(duì)某位參賽選手的評(píng)分分別為9,x,8,y,9.已知這組數(shù)據(jù)的平均數(shù)為8.6,方差為0.24,則______14.與圓外切于原點(diǎn),且被y軸截得的弦長(zhǎng)為8的圓的標(biāo)準(zhǔn)方程為_(kāi)_________15.已知拋物線:,過(guò)焦點(diǎn)作傾斜角為的直線與交于,兩點(diǎn),,在的準(zhǔn)線上的投影分別為,兩點(diǎn),則__________.16.已知數(shù)列的前項(xiàng)和為,則__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的離心率為,左、右焦點(diǎn)分別為,,過(guò)的直線交橢圓E于A,B兩點(diǎn).當(dāng)軸時(shí),(1)求橢圓E的方程;(2)求的范圍18.(12分)△ABC的三個(gè)頂點(diǎn)分別為(1)求△ABC的外接圓M的方程;(2)設(shè)直線與圓M交于兩點(diǎn),求|PQ|的值19.(12分)若存在實(shí)常數(shù)k和b,使得函數(shù)和對(duì)其公共定義域上的任意實(shí)數(shù)x都滿足:和恒成立,則稱此直線y=kx+b為和的“隔離直線”.已知函數(shù),.(1)證明函數(shù)在內(nèi)單調(diào)遞增;(2)證明和之間存在“隔離直線”,且b的最小值為-4.20.(12分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,平面,,是的中點(diǎn).(1)若為線段的中點(diǎn),證明:平面;(2)線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.21.(12分)如圖,ABCD是邊長(zhǎng)為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)證明:AC∥平面BEF;(2)求點(diǎn)C到平面BEF的距離22.(10分)已知函數(shù).(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)若f(x)≥0對(duì)定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)規(guī)律,總結(jié)通項(xiàng)公式,即可得答案.【詳解】根據(jù)規(guī)律可知數(shù)列的前三項(xiàng)為,所以該數(shù)列一個(gè)通項(xiàng)公式為故選:A2、B【解析】求出焦點(diǎn),則可得出,即可求出漸近線方程.【詳解】由橢圓可得焦點(diǎn)為,則設(shè)雙曲線方程為,可得,則離心率,解得,則,所以漸近線方程為.故選:B.3、C【解析】先由已知結(jié)合拋物線的定義求出,從而可得拋物線的準(zhǔn)線方程,則可求出準(zhǔn)線l與兩條漸近線的交點(diǎn)分別為,然后由題意可得,進(jìn)而可求出雙曲線的離心率詳解】依題意,拋物線準(zhǔn)線,由拋物線定義知,解得,則準(zhǔn)線,雙曲線C的兩條漸近線為,于是得準(zhǔn)線l與兩條漸近線的交點(diǎn)分別為,原點(diǎn)為O,則面積,雙曲線C的半焦距為c,離心率為e,則有,解得故選:C4、C【解析】根據(jù)分布列性質(zhì)計(jì)算可得;【詳解】解:依題意,解得,所以;故選:C5、C【解析】如下圖所示,是底角為的等腰三角形,則有所以,所以又因?yàn)?,所以,,所以所以答案選C.考點(diǎn):橢圓的簡(jiǎn)單幾何性質(zhì).6、B【解析】求出拋物線的焦點(diǎn)坐標(biāo),可得出的值,進(jìn)而可求得橢圓的離心率.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,由已知可得,可得,因此,該橢圓的離心率為.故選:B.7、C【解析】根據(jù)題先求出閱讀過(guò)西游記人數(shù),進(jìn)而得解.【詳解】由題意得,閱讀過(guò)《西游記》的學(xué)生人數(shù)為90-80+60=70,則其與該校學(xué)生人數(shù)之比為70÷100=0.7.故選C【點(diǎn)睛】本題考查容斥原理,滲透了數(shù)據(jù)處理和數(shù)學(xué)運(yùn)算素養(yǎng).采取去重法,利用轉(zhuǎn)化與化歸思想解題8、B【解析】取即可得到第一步應(yīng)驗(yàn)證不等式.【詳解】由題意得,當(dāng)時(shí),不等式為故選:B9、D【解析】根據(jù)導(dǎo)函數(shù)大于,原函數(shù)單調(diào)遞增;導(dǎo)函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導(dǎo)函數(shù)得圖象可得:時(shí),,所以單調(diào)遞減,排除選項(xiàng)A、B,當(dāng)時(shí),先正后負(fù),所以在先增后減,因選項(xiàng)C是先減后增再減,故排除選項(xiàng)C,故選:D.10、D【解析】設(shè)切點(diǎn)為,則切線的斜率為,然后根據(jù)條件可得的值,然后可得答案.【詳解】設(shè)切點(diǎn)為,因?yàn)?,所以切線的斜率為因?yàn)榍€f(x)=x2的一條切線l與直線平行,所以,即所以l的方程為,即故選:D11、C【解析】畫出直觀圖,利用椎體體積公式進(jìn)行求解.【詳解】畫出直觀圖,為四棱錐A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE兩兩垂直,故體積為.故選:C12、D【解析】焦點(diǎn)三角形問(wèn)題,可結(jié)合為三角形的中位線,判斷:焦點(diǎn)三角形為直角三角形,并且有,,可由勾股定理得出關(guān)系,從而得到關(guān)系,從而求得漸近線方程.【詳解】由題意知,,且點(diǎn)是線段的中點(diǎn),點(diǎn)是線段的中點(diǎn),為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點(diǎn)睛】雙曲線上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形,稱為雙曲線的焦點(diǎn)三角形,與焦點(diǎn)三角形有關(guān)的計(jì)算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關(guān)系二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】根據(jù)平均數(shù)和方差的計(jì)算公式,求得,則問(wèn)題得解.【詳解】由題可知:整理得:;,整理得:,聯(lián)立方程組得,解得或,對(duì)應(yīng)或,故.故答案為:1.14、;【解析】設(shè)所求圓的圓心為,根據(jù)兩圓外切于原點(diǎn)可知兩圓心與原點(diǎn)共線,再根據(jù)弦長(zhǎng)列出方程組求出即可.【詳解】設(shè)所求圓的圓心為,因?yàn)閳A的圓心為,與原點(diǎn)連線的斜率為,又所求圓與已知圓外切于原點(diǎn),,①所以所求圓的半徑滿足,又被y軸截得的弦長(zhǎng)為8,②由①②解得,所以圓的方程為.故答案為:15、【解析】設(shè),則,將直線方程與拋物線方程聯(lián)立,結(jié)合韋達(dá)定理即得.【詳解】由拋物線:可知?jiǎng)t焦點(diǎn)坐標(biāo)為,∴過(guò)焦點(diǎn)且斜率為的直線方程為,化簡(jiǎn)可得,設(shè),則,由可得,所以則故答案為:16、【解析】根據(jù)題意求得,得到,利用等差數(shù)列的求和公式,求得,結(jié)合裂項(xiàng)法求和法,即可求解.【詳解】由,可得,即,因?yàn)?,所以,又因?yàn)?,所以,可得,所以,所?故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)根據(jù)離心率及通徑長(zhǎng)求出橢圓方程;(2)分直線AB斜率存在和斜率不存在兩種情況得到的范圍,進(jìn)而得到答案.【小問(wèn)1詳解】當(dāng)軸時(shí),取代入橢圓方程得:,得,所以,又,解得,,所以橢圓方程為【小問(wèn)2詳解】由,記,當(dāng)軸時(shí),由(1)知:,所以,當(dāng)AB斜率為k時(shí),直線AB為,,消去y得,所以,,所以,綜上,的范圍是.18、(1);(2).【解析】(1)設(shè)出圓的一般方程,根據(jù)的坐標(biāo)滿足圓方程,待定系數(shù),即可求得圓方程;(2)根據(jù)(1)中所求圓方程,結(jié)合弦長(zhǎng)公式,即可求得結(jié)果.【小問(wèn)1詳解】設(shè)圓M的方程為,因?yàn)槎荚趫A上,則,解得,故圓M的方程為,也即.【小問(wèn)2詳解】由(1)可知,圓M的圓心坐標(biāo)為,半徑為,點(diǎn)M到直線的距離故.19、(1)見(jiàn)解析(2)見(jiàn)解析【解析】(1)由導(dǎo)數(shù)得出在上的單調(diào)性;(2)設(shè)和之間的隔離直線為y=kx+b,由題設(shè)條件得出對(duì)任意恒成立,再由二次函數(shù)的性質(zhì)求解即可.【小問(wèn)1詳解】,當(dāng)時(shí),在上單調(diào)遞增在內(nèi)單調(diào)遞增【小問(wèn)2詳解】設(shè)和之間的隔離直線為y=kx+b則對(duì)任意恒成立,即對(duì)任意恒成立由對(duì)任意恒成立,得當(dāng)時(shí),則有符合題意;當(dāng)時(shí),則有對(duì)任意恒成立的對(duì)稱軸為又的對(duì)稱軸為即故和之間存在“隔離直線”,且b的最小值為-4.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:在解決問(wèn)題一時(shí),求了一階導(dǎo)得不了函數(shù)的單調(diào)性,再次求導(dǎo)得,進(jìn)而得出在恒成立,得在上的單調(diào)性.20、(1)證明見(jiàn)解析;(2)存在點(diǎn),且的長(zhǎng)為,理由見(jiàn)解析.【解析】(1)取的中點(diǎn)為,連接,得到,結(jié)合面面平行的判定定理證得平面平面,進(jìn)而得到平面;(2)以為原點(diǎn),所在的直線分別為軸、軸,以垂直平面的直線為軸,建立空間直角坐標(biāo)系,設(shè),求得的法向量為和向量,結(jié)合向量的夾角公式列出方程,求得的值,即可求解.【小問(wèn)1詳解】證明:取的中點(diǎn)為,連接,因?yàn)榉謩e為的中點(diǎn),所以,又因?yàn)槠矫妫?,所以平面平面,又由平面,所以平?【小問(wèn)2詳解】解:以為原點(diǎn),所在的直線分別為軸、軸,以垂直平面的直線為軸,建立空間直角坐標(biāo)系,如圖所示,因?yàn)榈酌媸沁呴L(zhǎng)為2的菱形,設(shè),在直角中,可得,在直角中,可得,在中,因?yàn)椋?,即,解得,設(shè),可得,則,設(shè)平面的法向量為,則,令,可得,設(shè)直線與平面所成角為,所以,解得,即,所以存在點(diǎn),且的長(zhǎng)為.21、(1)證明見(jiàn)解析(2)【解析】(1)建立空間直角坐標(biāo)系,進(jìn)而求出平面BEF的法向量,然后證明線面平行;(2)算出在向量方向上的投影,進(jìn)而求得答案.【小問(wèn)1詳解】因?yàn)镈E⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因?yàn)锳BCD是正方形,所以DA⊥DC.以D為坐標(biāo)原點(diǎn),所在方向分別為軸的正方向建立空間直角坐標(biāo)系,則A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(xiàn)(2,0,1),所以,,設(shè)平面BEF的法向量,因?yàn)?,所以?x-2y+2z=0,-2y+z=0,令y=1,則=(1,1,2),又因?yàn)椋?-2,2,0),所以,即,而平面BEF,所以AC∥平面BEF.【小問(wèn)2詳解】設(shè)點(diǎn)C到平面BEF的距離為d,而,所以,所以點(diǎn)C到平面BEF的距離為22、(1)答案見(jiàn)解析(2)【解析】(1)求導(dǎo)數(shù),然后對(duì)進(jìn)行分類討論,利用導(dǎo)數(shù)的正負(fù),可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32T-防汛抗旱特征水位核定規(guī)程編制說(shuō)明
- 海南省??谑?024-2025學(xué)年四年級(jí)(上)期末語(yǔ)文試卷(含答案)
- 2025年社會(huì)服務(wù)行業(yè)投資策略報(bào)告:穩(wěn)舵定錨行致遠(yuǎn)奮楫揚(yáng)帆譜新篇
- 球的表面積和體積課件
- 【大學(xué)課件】單片機(jī)的系統(tǒng)擴(kuò)展
- 經(jīng)濟(jì)學(xué)馬曉蓮課件房地產(chǎn)市場(chǎng)研究分析
- 中國(guó)證券市場(chǎng)供需格局及未來(lái)發(fā)展趨勢(shì)報(bào)告
- 2025年容積泵項(xiàng)目可行性研究報(bào)告
- 中國(guó)陶瓷耐磨磚項(xiàng)目投資可行性研究報(bào)告
- 2025共同出資合作開(kāi)發(fā)地塊合同模板
- 2024-2024年上海市高考英語(yǔ)試題及答案
- Python數(shù)據(jù)分析與應(yīng)用 課件 第12章 Seaborn
- 初三歷史復(fù)習(xí)備考策略
- 廣東省云浮市(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)人教版期末考試(上學(xué)期)試卷及答案
- 國(guó)潮風(fēng)中國(guó)風(fēng)2025蛇年大吉蛇年模板
- 《信托知識(shí)培訓(xùn)》課件
- 物業(yè)項(xiàng)目經(jīng)理崗位競(jìng)聘
- 第8課《蒲柳人家(節(jié)選)》教學(xué)設(shè)計(jì)-2023-2024學(xué)年統(tǒng)編版語(yǔ)文九年級(jí)下冊(cè)
- 幼兒沙池活動(dòng)指導(dǎo)方法
- 2024年冬季校園清雪合同
- 翻譯美學(xué)理論
評(píng)論
0/150
提交評(píng)論