湖南省常德芷蘭實驗學(xué)校2025屆九年級數(shù)學(xué)第一學(xué)期開學(xué)達標測試試題【含答案】_第1頁
湖南省常德芷蘭實驗學(xué)校2025屆九年級數(shù)學(xué)第一學(xué)期開學(xué)達標測試試題【含答案】_第2頁
湖南省常德芷蘭實驗學(xué)校2025屆九年級數(shù)學(xué)第一學(xué)期開學(xué)達標測試試題【含答案】_第3頁
湖南省常德芷蘭實驗學(xué)校2025屆九年級數(shù)學(xué)第一學(xué)期開學(xué)達標測試試題【含答案】_第4頁
湖南省常德芷蘭實驗學(xué)校2025屆九年級數(shù)學(xué)第一學(xué)期開學(xué)達標測試試題【含答案】_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準考證號學(xué)校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁湖南省常德芷蘭實驗學(xué)校2025屆九年級數(shù)學(xué)第一學(xué)期開學(xué)達標測試試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)若代數(shù)式有意義,則實數(shù)x的取值范圍是A. B.且 C.且 D.2、(4分)如圖,在平面直角坐標系xOy中,菱形ABCD的頂點A的坐標為,點B的坐標為,點C在第一象限,對角線BD與x軸平行直線與x軸、y軸分別交于點E,將菱形ABCD沿x軸向左平移m個單位,當(dāng)點D落在的內(nèi)部時不包括三角形的邊,m的值可能是A.3 B.4 C.5 D.63、(4分)如圖,在中,,,則的度數(shù)是()A. B. C. D.4、(4分)如圖,△ABC中,∠C=90°,E、F分別是AC、BC上兩點,AE=8,BF=6,點P、Q、D分別是AF、BE、AB的中點,則PQ的長為()A.4 B.5 C.6 D.85、(4分)下面各組變量的關(guān)系中,成正比例關(guān)系的有()A.人的身高與年齡B.買同一練習(xí)本所要的錢數(shù)與所買本數(shù)C.正方形的面積與它的邊長D.汽車從甲地到乙地,所用時間與行駛速度6、(4分)如圖,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分線與AB的中垂線交于點O,連接OC,則∠AOC的度數(shù)為()A.151° B.122° C.118° D.120°7、(4分)已知y=m+3xm2-8是正比例函數(shù),則A.8 B.4 C.±3 D.38、(4分)如圖,在平面直角坐標系中,正方形ABCD的頂點O在坐標原點,點B的坐標為(1,4),點A在第二象限,反比例函數(shù)的圖象經(jīng)過點A,則k的值是()A.﹣2 B.﹣4 C.﹣ D.二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)若直線y=ax+7經(jīng)過一次函數(shù)y=4﹣3x和y=2x﹣1的交點,則a的值是_____.10、(4分)如圖,直線y1=-x+a與直線y2=bx-4相交于點P(1,-3),則不等式-x+a≥bx-4的解集是___________.11、(4分)數(shù)據(jù),,,的平均數(shù)是4,方差是3,則數(shù)據(jù),,,的平均數(shù)和方差分別是_____________.12、(4分)定義運算ab=a2﹣2ab,下面給出了關(guān)于這種運算的幾個結(jié)論:①25=﹣16;②是無理數(shù);③方程xy=0不是二元一次方程:④不等式組的解集是﹣<x<﹣.其中正確的是______(填寫所有正確結(jié)論的序號)13、(4分)甲、乙兩人面試和筆試的成績?nèi)缦卤硭荆汉蜻x人甲乙測試成績(百分制)面試成績8692筆試成績9083某公司認為,招聘公關(guān)人員,面試成績應(yīng)該比筆試成績重要,如果面試和筆試的權(quán)重分別是6和4,根據(jù)兩人的平均成績,這個公司將錄取________。三、解答題(本大題共5個小題,共48分)14、(12分)解方程組:.15、(8分)如圖①,在平面直角坐標系中,點,的坐標分別為,,點在直線上,將沿射線方向平移,使點與點重合,得到(點、分別與點、對應(yīng)),線段與軸交于點,線段,分別與直線交于點,.(1)求點的坐標;(2)如圖②,連接,四邊形的面積為__________(直接填空);(3)過點的直線與直線交于點,當(dāng)時,請直接寫出點的坐標.16、(8分)如圖,在由邊長為1個單位的長度的小正方形組成的網(wǎng)格圖中,已知點O及△ABC的頂點均為網(wǎng)格線的交點(1)在給定網(wǎng)格中,以O(shè)為位似中心,將△ABC放大為原來的三倍,得到請△A′B′C′,請畫出△A′B′C′;(2)B′C′的長度為___單位長度,△A′B′C′的面積為___平方單位。17、(10分)如圖,正方形ABCD的頂點坐標分別為A(1,2),B(1,-2),C(5,-2),D(5,2),將正方形ABCD向左平移5個單位,作出它的圖像,并寫出圖像的頂點坐標.18、(10分)請把下列證明過程補充完整:已知:如圖,DE∥BC,BE平分∠ABC.求證:∠1=∠1.證明:因為BE平分∠ABC(已知),所以∠1=______().又因為DE∥BC(已知),所以∠2=_____().所以∠1=∠1().B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,中,,,,是內(nèi)部的任意一點,連接,,,則的最小值為__.20、(4分)將直線y=﹣2x﹣2向上平移5個單位后,得到的直線為_____.21、(4分)一個有進水管與出水管的容器,從某時刻開始的4分內(nèi)只進水不出水,在隨后的若干分內(nèi)既進水又出水,之后只有出水不進水,每分鐘的進水量和出水量是兩個常數(shù),容器內(nèi)的水量(單位:升)與時間(單位:分)之間的關(guān)系如圖所示,則進水速度是______升/分,出水速度是______升/分,的值為______.22、(4分)命題“兩直線平行,同位角相等”的逆命題是.23、(4分)如圖,在平面直角坐標系中,矩形紙片OABC的頂點A,C分別在x軸,y軸的正半軸上,將紙片沿過點C的直線翻折,使點B恰好落在x軸上的點B′處,折痕交AB于點D.若OC=9,,則折痕CD所在直線的解析式為____.二、解答題(本大題共3個小題,共30分)24、(8分)京廣高速鐵路工程指揮部,要對某路段工程進行招標,接到了甲、乙兩個工程隊的投標書.從投標書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的;若由甲隊先做10天,剩下的工程再由甲、乙兩隊合作30天完成.(1)求甲、乙兩隊單獨完成這項工程各需多少天?(2)已知甲隊每天的施工費用為8.4萬元,乙隊每天的施工費用為5.6萬元.工程預(yù)算的施工費用為500萬元.為縮短工期并高效完成工程,擬安排預(yù)算的施工費用是否夠用?若不夠用,需追加預(yù)算多少萬元?請給出你的判斷并說明理由.25、(10分)8年級某老師對一、二班學(xué)生閱讀水平進行測試,并將成績進行了統(tǒng)計,繪制了如下圖表(得分為整數(shù),滿分為10分,成績大于或等于6分為合格,成績大于或等于9分為優(yōu)秀).班級平均分方差中位數(shù)眾數(shù)合格率優(yōu)秀率一班2.11792.5%20%二班6.854.28810%根據(jù)圖表信息,回答問題:(1)直接寫出表中,,,的值;(2)用方差推斷,班的成績波動較大;用優(yōu)秀率和合格率推斷,班的閱讀水平更好些;(3)甲同學(xué)用平均分推斷,一班閱讀水平更好些;乙同學(xué)用中位數(shù)或眾數(shù)推斷,二班閱讀水平更好些。你認為誰的推斷比較科學(xué)合理,更客觀些,為什么?26、(12分)如圖,矩形中,、的平分線、分別交邊、于點、。求證;四邊形是平行四邊形。

參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、B【解析】

直接利用二次根式的定義結(jié)合分式有意義的條件得出答案.【詳解】∵代數(shù)式有意義,∴x﹣1≥0,且x﹣1≠0,解得:x≥1且x≠1.故選B.本題主要考查了二次根式有意義的條件,正確把握二次根式的定義是解題的關(guān)鍵.2、C【解析】

根據(jù)菱形的對角線互相垂直平分表示出點D的坐標,再根據(jù)直線解析式求出點D移動到MN上時的x的值,從而得到m的取值范圍.【詳解】∵菱形ABCD的頂點A(2,0),點B(1,0),∴點D的坐標為(4,1),當(dāng)y=1時,x+3=1,解得x=-2,∴點D向左移動2+4=1時,點D在EF上,∵點D落在△EOF的內(nèi)部時(不包括三角形的邊),∴4<m<1.∴m的值可能是5.故選C本題考查的是一次函數(shù)圖象上點的坐標特征,菱形的性質(zhì),比較簡單,求出m的取值范圍是解題的關(guān)鍵.3、B【解析】

在平行四邊形ABCD中可求出∠C=∠A=75°,利用兩直線平行,同旁內(nèi)角互補可以求∠ABD的度數(shù).【詳解】在中,△BCD是等腰三角形∠C=∠DBC=75°又∠C+∠ABC=180°即∠C+∠DBC+∠ABD=180°∠ABD=180°-∠C-∠DBC=180°-75°-75°=30°此題考查了平行四邊形的性質(zhì)、三角形的內(nèi)角和定義、等腰三角形的性質(zhì).4、B【解析】

利用三角形中位線定理即可作答.【詳解】∵點P、Q、D分別是AF、BE、AB的中點∴∴DQ∥AE,PD∥BF∵∠C=90°∴AE⊥BF∴DQ⊥PD∴∠PDQ=90°∴.故選B.本題考查的知識點是勾股定理的運用,解題關(guān)鍵是證得∠PDQ=90°.5、B【解析】

判斷兩個相關(guān)聯(lián)的量之間成什么比例,就看這兩個量是對應(yīng)的比值一定,還是對應(yīng)的乘積一定;如果是比值一定,就成正比例;如果是乘積一定,則成反比例.【詳解】解:A、人的身高與年齡不成比例,故選項錯誤;B、單價一定,買同一練習(xí)本所要的錢數(shù)與所買本數(shù)成正比例,故選項正確;C、正方形的面積與它的邊長不成比例,故選項錯誤;D、路程一定,所用時間與行駛速度成反比例,故選項錯誤;故選:B.考查了正比例函數(shù)的定義,此題屬于辨識成正、反比例的量,就看這兩個量是對應(yīng)的比值一定,還是對應(yīng)的乘積一定,再做判斷.6、B【解析】

根據(jù)等腰三角形的性質(zhì)得出AO垂直平分BC,根據(jù)線段垂直平分線性質(zhì)得出AO=BO、OB=OC,利用等邊對等角及角平分線性質(zhì),內(nèi)角和定理求出所求即可.【詳解】連接BO,延長AO交BC于E,∵AB=AC,AO平分∠BAC,∴AO⊥BC,AO平分BC,∴OB=OC,∵O在AB的垂直平分線上,∴AO=BO,∴AO=CO,∴∠OAC=∠OCA=∠OAD=×58°=29°,∴∠AOC=180°-2×29°=122°,故選B.此題考查了等腰三角形的性質(zhì),以及線段垂直平分線的性質(zhì),熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.7、D【解析】

直接利用正比例函數(shù)的定義分析得出即可.【詳解】∵y=(m+2)xm2﹣8是正比例函數(shù),∴m2﹣8=2且m+2≠0,解得m=2.故選:D.考查了正比例函數(shù)的定義,解題關(guān)鍵是掌握正比例函數(shù)的定義條件:正比例函數(shù)y=kx的定義條件是:k為常數(shù)且k≠0,自變量次數(shù)為2.8、C【解析】

作AD⊥x軸于D,CE⊥x軸于E,先通過證得△AOD≌△OCE得出AD=OE,OD=CE,設(shè)A(x,),則C(,-x),根據(jù)正方形的性質(zhì)求得對角線解得F的坐標,根據(jù)直線OB的解析式設(shè)出直線AC的解析式為:y=-x+b,代入交點坐標求得解析式,然后把A,C的坐標代入即可求得k的值.【詳解】作AD⊥x軸于D,CE⊥x軸于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,∠OAD=∠COE;∠ADO=∠OEC=90°;OA=OC,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,設(shè)A(x,),則C(,?x),∵點B的坐標為(1,4),∴OB=,直線OB為:y=4x,∵AC和OB互相垂直平分,∴它們的交點F的坐標為(,2),設(shè)直線AC的解析式為:y=?x+b,代入(,2)得,2=?×+b,解得b=,直線AC的解析式為:y=?x+,把A(x,),C(,?x)代入得.,解得k=?.故選C.本題考查了反比例函數(shù)圖像上的點的坐標特征,牢牢掌握反比例函數(shù)圖像上的點的坐標特征是解答本題的關(guān)鍵.二、填空題(本大題共5個小題,每小題4分,共20分)9、-2【解析】根據(jù)題意,得4﹣3x=2x﹣1,解得x=1,∴y=1.把(1,1)代入y=ax+7,得a+7=1,解得a=﹣2.故答案為﹣2.10、x≤1.【解析】

觀察函數(shù)圖象得到當(dāng)x<1時,函數(shù)y=-x+a的圖象都在y=bx-4的圖象上方,所以不等式-x+a≥bx-4的解集為x≤1.【詳解】如圖,當(dāng)x<1時,函數(shù)y=-x+a的圖象都在y=bx-4的圖象上方,所以不等式-x+a≥bx-4的解集為x≤1;故答案為x≤1.本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構(gòu)成的集合.11、41,3【解析】試題分析:根據(jù)題意可知原數(shù)組的平均數(shù)為,方差為=3,然后由題意可得新數(shù)據(jù)的平均數(shù)為,可求得方程為.故答案為:41,3.12、【解析】

先認真審題.理解新運算,根據(jù)新運算展開,求出后再判斷即可.利用題中的新定義計算即可得到結(jié)果.【詳解】①25=22-2×2×5=-16,故①正確;②21=22-2×2×1=0,所以是有理數(shù),故②錯誤;③xy=x2-2xy=0,是二元二次方程,不是二元一次方程,故③正確;④不等式組變形為,解得<x<,故④正確.故的答案為:①③④本題考查了整式的混合運算的應(yīng)用,涉及了開方運算,方程的判斷,不等式組的解集等,解此題的關(guān)鍵是能理解新運算的意義,題目比較好,難度適中.13、乙【解析】

根據(jù)題意先算出甲、乙兩位候選人的加權(quán)平均數(shù),再進行比較,即可得出答案.【詳解】甲的平均成績?yōu)椋海?6×6+90×4)÷10=87.6(分),乙的平均成績?yōu)椋海?2×6+83×4)÷10=88.4(分),因為乙的平均分數(shù)最高,所以乙將被錄取.故答案為乙.此題考查了加權(quán)平均數(shù)的計算公式,注意,計算平均數(shù)時按6和4的權(quán)進行計算.三、解答題(本大題共5個小題,共48分)14、,,,.【解析】

由①得(x﹣y)(x﹣2y)=0,即x﹣y=0,x﹣2y=0,然后將原方程組化為或求解即可.【詳解】,由①,得(x﹣y)(x﹣2y)=0,∴x﹣y=0,x﹣2y=0,所以原方程組可以變形為或,解方程組,得,;解方程組,得,,所以原方程組的解為:,,,.本題考查了二元二次方程組的解法,解題思路類似與二元一次方程組,通過代入消元法轉(zhuǎn)化為一元二次方程求解即可.15、(1)C(-1,6);(2)24;(3)點N的坐標為(,)或(,);【解析】

(1)先求出點E的坐標,根據(jù)平移得到OA=CE=4,即可得到點C的坐標;(2)根據(jù)圖象平移得到四邊形的面積等于的面積,根據(jù)面積公式計算即可得到答案;(3)根據(jù)直線特點求出,tan∠NCE=tan∠POB=,再分兩種情況:點N在CE的上方或下方時,分別求出直線CN的解析式得到點N的坐標即可.【詳解】(1)∵點在直線上,∴m=6,∴E(3,6),由平移得CE=OA=4,∴點C的坐標是(-1,6);(2)由平移得到四邊形的面積等于的面積,∴,故答案為:24;(3)由直線y=2x得到:tan∠POB=,當(dāng)時,tan∠NCE=tan∠POB=,①當(dāng)點N在CE上方時,直線CE的表達式為:,低昂點C的坐標代入上式并解得:b=,∴直線CN的表達式是y=x+,將上式與y=2x聯(lián)立并解得:x=,y=,∴N(,);②當(dāng)點N在CE下方時,直線CE的表達式為:y=-x+,同理可得:點N(,);綜上,點N的坐標為(,)或(,).此題考查函數(shù)圖象上的點坐標,平行四邊形的面積公式,平移的性質(zhì),求函數(shù)解析式,根據(jù)解析式求角的三角函數(shù)值,綜合掌握各知識點是解題的關(guān)鍵.16、(1)如圖所示;見解析;(2)35,9;【解析】

(1)利用位似圖形的性質(zhì)得出對應(yīng)點坐標進而得出答案;(2)根據(jù)勾股定理和三角形的面積公式即可得到結(jié)論.【詳解】(1)如圖所示:△A′B′C′即為所求:(2)如圖所示:B′C′的長度=32+62∵A′C′=3,∴△A′B′C′的面積為=12×3×6=9故答案為:35,9.此題考查作圖-位似變換,勾股定理和三角形的面積公式,解題關(guān)鍵在于掌握作圖法則17、見解析;【解析】

根據(jù)平移的性質(zhì)作圖,然后結(jié)合圖形寫出頂點坐標.【詳解】解:如圖所示,正方形A1B1C1D1即為所求,頂點坐標為:A1(-4,2),B1(-4,-2),C1(0,-2),D1(0,2).本題考查了作圖——平移變換,熟練掌握平移的性質(zhì)是解題的關(guān)鍵.18、∠2;角平分線的定義;∠1;兩直線平行,同位角相等;等量代換.【解析】利用角平分線的定義和平行線的性質(zhì)填空一、填空題(本大題共5個小題,每小題4分,共20分)19、.【解析】

將繞著點逆時針旋轉(zhuǎn),得到,連接,,通過三角形全等得出三點共線長度最小,再利用勾股定理解答即可.【詳解】如圖,將繞著點逆時針旋轉(zhuǎn),得到,連接,,,,,,,是等邊三角形當(dāng)點,點,點,點共線時,有最小值,故答案為:.本題考查三點共線問題,正確畫出輔助線是解題關(guān)鍵.20、y=﹣2x+3【解析】

一次函數(shù)圖像,即直線平移的原則是:上加下減,左加右減,據(jù)此即可求解.【詳解】將直線y=﹣2x﹣2向上平移5個單位,得到直線y=﹣2x﹣2+5,即y=﹣2x+3;故答案為:y=﹣2x+3;該題主要考查了一次函數(shù)圖像,即直線平移的方法:上加下減,左加右減,準確掌握平移的原則即可解題.21、53.751【解析】

首先根據(jù)圖象中的數(shù)據(jù)可求出進水管以及出水管的進出水速度,進而利用容器內(nèi)的水量列出方程求出即可.【詳解】解:由圖象可得出:

進水速度為:20÷4=5(升/分鐘),

出水速度為:5-(30-20)÷(12-4)=3.75(升/分鐘),

(a-4)×(5-3.75)+20=(24-a)×3.75

解得:a=1.故答案為:5;3.75;1此題主要考查了一次函數(shù)的應(yīng)用以及一元一次方程的應(yīng)用等知識,利用圖象得出進出水管的速度是解題關(guān)鍵.22、同位角相等,兩直線平行【解析】

逆命題是原命題的反命題,故本題中“兩直線平行,同位角相等”的逆命題是同位角相等,兩直線平行本題屬于對逆命題的基本知識的考查以及逆命題的反命題的考查和運用23、y=x+9.【解析】

根據(jù)OC=9,先求出BC的長,繼而根據(jù)折疊的性質(zhì)以及勾股定理的性質(zhì)求出OB′的長,求得AB′的長,設(shè)AD=m,則B′D=BD=9-m,在Rt△AB′D中利用勾股定理求出x的長,進而求得點D的坐標,再利用待定系數(shù)法進行求解即可.【詳解】∵OC=9,,∴BC=15,∵四邊形OABC是矩形,∴AB=OC=9,OA=BC=15,∠COA=∠OAB=90°,∴C(0,9),∵折疊,∴B′C=BC=15,B′D=BD,在Rt△COB′中,OB′==12,∴AB′=15-12=3,設(shè)AD=m,則B′D=BD=9-m,Rt△AB′D中,AD2+B′A2=B′D2,即m2+32=(9-m)2,解得m=4,∴D(15,4)設(shè)CD所在直線解析式為y=kx+b,把C、D兩點坐標分別代入得:,解得:,∴CD所在直線解析式為y=x+9,故答案為:y=x+9.本題考查了矩形的性質(zhì),折疊的性質(zhì),勾股定理,待定系數(shù)法求一次函數(shù)的解析式,求出點D的坐標是解本題的關(guān)鍵.二、解答題(本大題共3個小題,共30分)24、(1)甲隊單獨完成需60天,乙隊單獨完成這項工程需要90天;(2)工程預(yù)算的施工費用不夠,需追加預(yù)算4萬元.【解析】

(1)設(shè)甲單獨完成這項工程所需天數(shù),表示出乙單獨完成這項工程所需天數(shù)及各自的工作效率.根據(jù)工作量=工作效率×工作時間列方程求解;

(2)根據(jù)題意,甲乙合作工期最短,所以須求合作的時間,然后計算費用,作出判斷.【詳解】(1)解:設(shè)乙隊單獨完成這項工程需要天,則甲隊單獨完成需要填;解得:經(jīng)檢驗,x=90是原方程的根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論