版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省寧波市金蘭教育合作組織2025屆數(shù)學高二上期末檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知空間向量,,且與互相垂直,則k的值是()A.1 B.C. D.2.已知橢圓的右焦點為F,短軸的一個端點為P,直線與橢圓相交于A、B兩點.若,點P到直線l的距離不小于,則橢圓C離心率的取值范圍為()A. B.C. D.3.若,則()A.1 B.2C.4 D.84.已知數(shù)列滿足,且,,則()A. B.C. D.5.方程表示的曲線是()A.一個橢圓和一條直線 B.一個橢圓和一條射線C.一條射線 D.一個橢圓6.北京天壇的圜丘壇為古代祭天的場所,分上、中、下三層,上層中心有一塊圓形石板(稱為天心石),環(huán)繞天心石砌9塊扇面形石板構(gòu)成第一環(huán),向外每環(huán)依次增加9塊,下一層的第一環(huán)比上一層的最后一環(huán)多9塊,向外每環(huán)依次也增加9塊,已知每層環(huán)數(shù)相同,且下層比中層多729塊,則三層共有扇面形石板(不含天心石)()A.3699塊 B.3474塊C.3402塊 D.3339塊7.雙曲線的漸近線方程為()A. B.C. D.8.雙曲線:的一條漸近線與直線垂直,則它的離心率為()A. B.C. D.9.設(shè)O為正方形ABCD的中心,在O,A,B,C,D中任取3點,則取到的3點共線的概率為()A. B.C. D.10.下列說法:①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;②從統(tǒng)計量中得知有的把握認為吸煙與患肺病有關(guān)系,是指有的可能性使得推斷出現(xiàn)錯誤;③回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;④如果兩個變量的線性相關(guān)程度越高,則線性相關(guān)系數(shù)就越接近于;其中錯誤說法的個數(shù)是()A. B.C. D.11.設(shè)為直線上任意一點,過總能作圓的切線,則的最大值為()A. B.1C. D.12.已知集合,,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.美好人生路車站早上有6:40,6:50兩班開往A校的公交車,若李華同學在早上6:35至6:50之間隨機到達該車站,乘開往A校的公交車,公交車準時發(fā)車,則他等車時間不超過5分鐘的概率為______14.已知數(shù)列滿足,,的前項和為,則______.15.已知函數(shù),則曲線在點處的切線方程為___________.16.曲線在x=1處的切線方程為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,是棱長為的正方體,是棱的中點,是棱的中點(1)求直線與平面所成角的正弦值;(2)求到平面的距離18.(12分)已知拋物線C的對稱軸是y軸,點在曲線C上.(1)求拋物線的標準方程;(2)過拋物線焦點的傾斜角為直線l與拋物線交于A、B兩點,求線段AB的長度.19.(12分)已知首項為1的等比數(shù)列,滿足(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和20.(12分)已知函數(shù)(1)當時,求在區(qū)間上的最值;(2)若在定義域內(nèi)有兩個零點,求的取值范圍21.(12分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)若圓C與直線交于A,B兩點,______,求m的值從下列三個條件中任選一個補充在上面問題中并作答:條件①:;條件②:圓上一點P到直線的最大距離為;條件③:22.(10分)已知拋物線的焦點到準線的距離為2.(1)求C的方程:(2)過C上一動點P作圓兩條切線,切點分別為A,B,求四邊形PAMB面積的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由=0可求解【詳解】由題意,故選:D2、D【解析】設(shè)橢圓的左焦點為,由題可得,由點P到直線l的距離不小于可得,進而可求的范圍,即可得出離心率范圍.【詳解】設(shè)橢圓的左焦點為,P為短軸的上端點,連接,如圖所示:由橢圓的對稱性可知,A,B關(guān)于原點對稱,則,又,∴四邊形為平行四邊形,∴,又,解得:,點P到直線l距離:,解得:,即,∴,∴.故選:D.【點睛】關(guān)鍵點睛:本題考查橢圓離心率的求解,解題的關(guān)鍵是由橢圓定義得出,再根據(jù)已知條件得出.3、D【解析】由題意結(jié)合導數(shù)的運算可得,再由導數(shù)的概念即可得解.【詳解】由題意,所以,所以.故選:D.4、A【解析】由已知兩個不等式,利用“兩邊夾”思想求得,然后利用累加法可求得【詳解】∵,∴,∴,又,∴,即,∴故選:A【點睛】本題考查數(shù)列的遞推式,由遞推式的特征,采用累加法求得數(shù)列的項.解題關(guān)鍵是利用“兩邊夾”思想求解5、A【解析】根據(jù)題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個橢圓或一條直線.故選:A.6、C【解析】第n環(huán)天石心塊數(shù)為,第一層共有n環(huán),則是以9為首項,9為公差的等差數(shù)列,設(shè)為的前n項和,由題意可得,解方程即可得到n,進一步得到.【詳解】設(shè)第n環(huán)天石心塊數(shù)為,第一層共有n環(huán),則是以9為首項,9為公差的等差數(shù)列,,設(shè)為的前n項和,則第一層、第二層、第三層的塊數(shù)分別為,因為下層比中層多729塊,所以,即即,解得,所以.故選:C【點晴】本題主要考查等差數(shù)列前n項和有關(guān)的計算問題,考查學生數(shù)學運算能力,是一道容易題.7、A【解析】直接求出,,進而求出漸近線方程.【詳解】中,,,所以漸近線方程為,故.故選:A8、A【解析】先利用直線的斜率判定一條漸近線與直線垂直,求出,再利用雙曲線的離心率公式和進行求解.【詳解】因為直線的斜率為,所以雙曲線的一條漸近線與直線垂直,所以,即,則雙曲線的離心率.故選:A.卷II(非選擇題9、A【解析】列出從5個點選3個點的所有情況,再列出3點共線的情況,用古典概型的概率計算公式運算即可.【詳解】如圖,從5個點中任取3個有共種不同取法,3點共線只有與共2種情況,由古典概型的概率計算公式知,取到3點共線的概率為.故選:A【點晴】本題主要考查古典概型的概率計算問題,采用列舉法,考查學生數(shù)學運算能力,是一道容易題.10、C【解析】根據(jù)統(tǒng)計的概念逐一判斷即可.【詳解】對于①,方差反映一組數(shù)據(jù)的波動大小,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變,①正確;對于②從統(tǒng)計量中得知有的把握認為吸煙與患肺病有關(guān)系,是指有的可能性使得推斷出現(xiàn)錯誤;故②正確;對于③,線性回歸方程必過樣本中心點,回歸直線不一定就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線,也可能不過任何一個點;③不正確;對于④,如果兩個變量的線性相關(guān)程度越高,則線性相關(guān)系數(shù)就越接近于,不正確,應為相關(guān)系數(shù)的絕對值就越接近于;綜上,其中錯誤的個數(shù)是;故選:C.11、D【解析】根據(jù)題意,判斷點與圓的位置關(guān)系以及直線與圓的位置關(guān)系,根據(jù)直線與圓的位置關(guān)系,即可求得的最大值.【詳解】因為過過總能作圓的切線,故點在圓外或圓上,也即直線與圓相離或相切,則,即,解得,故的最大值為.故選:D.12、B【解析】由交集定義直接求解即可.【詳解】集合,,則.故選B.【點睛】本題主要考查了集合的交集運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】由題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,則所求概率.故答案為:.14、【解析】分析出當為正奇數(shù)時,,可求得的值,再分析出當為正偶數(shù)時,,可求得的值,進而可求得的值.【詳解】由題知,當為正奇數(shù)時,,于是,,,,,所以.又因為當為正偶數(shù)時,,且,所以兩式相加可得,于是,兩式相減得.所以,故.故答案為:.【點睛】關(guān)鍵點點睛:本題的解題關(guān)鍵在于分析出當為正奇數(shù)時,,以及當為正偶數(shù)時,,找出規(guī)律,結(jié)合并項求和法求出以及的值.15、【解析】對函數(shù)求導,由導數(shù)的幾何意義可得切線的斜率,求得切點,由直線的點斜式方程可得所求切線的方程【詳解】函數(shù)的導數(shù)為∴,.曲線在點處的切線方程為,即.故答案為:.16、【解析】根據(jù)導數(shù)的幾何意義求切線方程的斜率并求出,再由點斜式寫出切線方程即可.【詳解】由題設(shè),,則,而,所以在x=1處的切線方程為,即.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)以為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得直線與平面所成角的正弦值;(2)求出平面的法向量,利用空間向量法可求得到平面的距離.【小問1詳解】解:以為坐標原點,、、所在直線分別為、、軸建立如下圖所示的坐標系則、、、、、、,所以,,設(shè)平面的一個法向量為,,,由,取,可得,所以,,直線與平面所成角的正弦為小問2詳解】解:設(shè)平面的一個法向量,,,由,即,令,得,,所以點到平面的距離為即到平面的距離為18、(1)(2)16【解析】(1)設(shè)拋物線的標準方程為:,再代入求解即可.(2)根據(jù)焦點弦公式求解即可.【小問1詳解】由題意知拋物線C的對稱軸是y軸,點在曲線C上,所以拋物線開口向上,設(shè)拋物線的標準方程為:,代入點的坐標得:,解得則拋物線的標準方程為:.【小問2詳解】焦點,則直線的方程是,設(shè),,由得,,所以,則,故.19、(1)(2)【解析】(1)根據(jù)已知條件求得數(shù)列的公比,由此求得.(2)利用錯位相減求和法求得.【小問1詳解】設(shè)等比數(shù)列的公比為,由,可得.故數(shù)列是以1為首項,3為公比的等比數(shù)列,所以【小問2詳解】由(1)得,,①,②①②,得所以20、(1),;(2).【解析】(1)當時,求出導函數(shù),求出函數(shù)得單調(diào)區(qū)間,即可求出在區(qū)間上的最值;(2)由,分離參數(shù)得,根據(jù)函數(shù)得單調(diào)性作圖,結(jié)合圖像即可得出答案.【詳解】解:(1)當時,,,∴在單調(diào)遞減,在單調(diào)遞增,,,∴,(2),則,∴在單調(diào)遞增,在單調(diào)遞減,,當時,,當時,,作出函數(shù)和得圖像,∴由圖象可得,.21、(1)(2)【解析】(1)根據(jù)圓心在過點,的線段的中垂線上,同時圓心圓心在直線上,可求出圓心的坐標,進而求得半徑,最后求出其標準方程;(2)選①利用用垂徑定理可求得答案,選②根據(jù)圓上一點P到直線的最大距離為可求得答案,選③先利用向量的數(shù)量積可求得,解法就和選①時相同.【小問1詳解】由題意可知,圓心在點的中垂線上,該中垂線的方程為,于是,由,解得圓心,圓C的半徑所以,圓C的方程為;【小問2詳解】①,因為,,所以圓心C到直線l的距離,則,解得,②,圓上一點P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年絞線機項目建設(shè)方案
- 2024年冀中職業(yè)學院單招職業(yè)技能測試題庫各版本
- 2024年演出經(jīng)紀人之演出經(jīng)紀實務模擬考試試卷及答案(易錯題)
- 文化與中國傳統(tǒng)文化
- 發(fā)展無人機配送的技術(shù)路線與實施策略
- 2024年公務員考試新河縣《行政職業(yè)能力測驗》巔峰沖刺試卷含解析
- 2025年小學弟子規(guī)教學工作計劃
- Unit 6 Beautiful landscapes Grammar 說課稿 -2024-2025學年譯林版七年級英語下冊
- Unit 4 Natural Disasters Listening and Speaking說課稿-2024-2025學年人教版(2019)高中英語必修第一冊
- 2025年高一班主任工作計劃及打算
- 重癥超聲與休克-課件
- 電梯工程師在電梯設(shè)計中的工作內(nèi)容
- 二年級數(shù)學上冊口算天天練
- 2024國家開放大學電大本科《液壓氣動技術(shù)》期末試題及答案
- GB/T 30306-2024家用和類似用途飲用水處理濾芯
- 08D800-5 民用建筑電氣設(shè)計與施工 常用電氣設(shè)備安裝與控制
- 餐飲顧問合作協(xié)議
- 新教材牛津譯林版高中英語必修第二冊全冊各單元重點語法精講
- 兩課 說課 單相橋式整流電路分析(獲獎)
- 九年級英語校本作業(yè)(合訂)
- 九江市第一中學2024年高考數(shù)學一模試卷含解析
評論
0/150
提交評論