版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆河南省六市高一上數(shù)學(xué)期末綜合測試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知直線,平面滿足,則直線與直線的位置關(guān)系是A.平行 B.相交或異面C.異面 D.平行或異面2.基本再生數(shù)與世代間隔是流行病學(xué)基本參數(shù),基本再生數(shù)是指一個(gè)感染者傳染的平均人數(shù),世代間隔指兩代間傳染所需的平均時(shí)間,在型病毒疫情初始階段,可以用指數(shù)函數(shù)模型描述累計(jì)感染病例數(shù)隨時(shí)間(單位:天)的變化規(guī)律,指數(shù)增長率與、近似滿足,有學(xué)者基于已有數(shù)據(jù)估計(jì)出,.據(jù)此,在型病毒疫情初始階段,累計(jì)感染病例數(shù)增加至的4倍,至少需要()(參考數(shù)據(jù):)A.6天 B.7天C.8天 D.9天3.已知函數(shù),若函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.4.設(shè),則“”是“”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.某服裝廠2020年生產(chǎn)了15萬件服裝,若該服裝廠的產(chǎn)量每年以20%的增長率遞增,則該服裝廠的產(chǎn)量首次超過40萬件的年份是(參考數(shù)據(jù):取,)()A.2025屆 B.2025屆C.2025年 D.2026年6.命題“,”的否定是A., B.,C., D.,7.“”是“函數(shù)在內(nèi)單調(diào)遞增”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要8.一個(gè)球的內(nèi)接正方體的表面積為54,則球的表面積為()A. B.C. D.9.當(dāng)生物死后,它體內(nèi)的碳14含量會(huì)按確定的比率衰減(稱為衰減率),大約每經(jīng)過5730年衰減為原來的一半.2010年考古學(xué)家對(duì)良渚古城水利系統(tǒng)中一條水壩的建筑材料草裹泥)上提取的草莖遺存進(jìn)行碳14檢測,檢測出碳14的殘留量約為初始量的,以此推斷此水壩建成的年代大概是公元前()(參考數(shù)據(jù):,)A.年 B.年C.年 D.年10.不論a取何正實(shí)數(shù),函數(shù)恒過點(diǎn)()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,且,則的最小值為__________.12.等腰直角△ABC中,AB=BC=1,M為AC的中點(diǎn),沿BM把△ABC折成二面角,折后A與C的距離為1,則二面角C—BM—A的大小為_____________.13.在直角坐標(biāo)系中,直線的傾斜角________14.函數(shù),其中,,的圖象如圖所示,求的解析式____15.不等式的解為______16.已知水平放置的△ABC按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=2,∠B'A'C'=90°,則原△ABC的面積為______三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知且.(1)求的解析式;(2)解關(guān)于x不等式:.18.已知集合,.(1)求;(2)求.19.已知平面向量,,,且,.(1)求和:(2)若,,求向量與向量夾角的大小.20.某形場地,,米(、足夠長).現(xiàn)修一條水泥路在上,在上),在四邊形中種植三種花卉,為了美觀起見,決定在上取一點(diǎn),使且.現(xiàn)將鋪成鵝卵石路,設(shè)鵝卵石路總長為米.(1)設(shè),將l表示成的函數(shù)關(guān)系式;(2)求l的最小值.21.如圖,已知四棱錐中,底面為平行四邊形,點(diǎn),,分別是,,的中點(diǎn)(1)求證:平面;(2)求證:平面平面
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】∵a∥α,∴a與α沒有公共點(diǎn),b?α,∴a、b沒有公共點(diǎn),∴a、b平行或異面故選D.2、B【解析】根據(jù)題意將給出的數(shù)據(jù)代入公式即可計(jì)算出結(jié)果【詳解】因?yàn)?,,,所以可以得到,由題意可知,所以至少需要7天,累計(jì)感染病例數(shù)增加至的4倍故選:B3、A【解析】函數(shù)有三個(gè)零點(diǎn),轉(zhuǎn)化為函數(shù)的圖象與直線有三個(gè)不同的交點(diǎn),畫出的圖象,結(jié)合圖象求解即可【詳解】因?yàn)楹瘮?shù)有三個(gè)零點(diǎn),所以函數(shù)的圖象與直線有三個(gè)不同的交點(diǎn),函數(shù)的圖象如圖所示,由圖可知,,故選:A4、A【解析】根據(jù)充分條件、必要條件的概念求解即可.【詳解】因?yàn)?,所以由,,所以“”是“”成立的充分不必要條件故選:A5、D【解析】設(shè)該服裝廠的產(chǎn)量首次超過40萬件的年份為n,進(jìn)而得,再結(jié)合對(duì)數(shù)運(yùn)算解不等式即可得答案.【詳解】解:設(shè)該服裝廠的產(chǎn)量首次超過40萬件的年份為n,則,得,因?yàn)?,所以故選:D6、C【解析】特稱命題的否定是全稱命題,并將結(jié)論加以否定,所以命題的否定為:,考點(diǎn):全稱命題與特稱命題7、A【解析】由函數(shù)在內(nèi)單調(diào)遞增得,進(jìn)而根據(jù)充分,必要條件判斷即可.【詳解】解:因?yàn)楹瘮?shù)在內(nèi)單調(diào)遞增,所以,因?yàn)槭堑恼孀蛹?,所以“”是“函?shù)在內(nèi)單調(diào)遞增”的充分而不必要條件故選:A8、A【解析】球的內(nèi)接正方體的對(duì)角線就是球的直徑,正方體的棱長為a,球的半徑為r,則,求出正方體棱長,再求球半徑即可【詳解】解:設(shè)正方體的棱長為a,球的半徑為r,則,所以又因所以所以故選:A【點(diǎn)睛】考查球內(nèi)接正方體棱長和球半徑的關(guān)系以及球表面積的求法,基礎(chǔ)題.9、B【解析】根據(jù)碳14的半衰期為5730年,即每5730年含量減少一半,設(shè)原來的量為,經(jīng)過年后變成了,即可列出等式求出的值,即可求解.【詳解】解:根據(jù)題意可設(shè)原來的量為,經(jīng)過年后變成了,即,兩邊同時(shí)取對(duì)數(shù),得:,即,,,以此推斷此水壩建成的年代大概是公元前年.故選:B.10、A【解析】令指數(shù)為0,即可求得函數(shù)恒過點(diǎn)【詳解】令x+1=0,可得x=-1,則∴不論取何正實(shí)數(shù),函數(shù)恒過點(diǎn)(-1,-1)故選A【點(diǎn)睛】本題考查指數(shù)函數(shù)的性質(zhì),考查函數(shù)恒過定點(diǎn),屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用已知條件湊出,再根據(jù)“”的巧用,最后利用基本不等式即可求解.【詳解】由,得,即.因?yàn)樗裕?則=,當(dāng)且僅當(dāng)即時(shí),等號(hào)成立.所以當(dāng)時(shí),取得最小值為.故答案為:.12、【解析】分別計(jì)算出的長度,然后結(jié)合二面角的求法,找出二面角,即可.【詳解】結(jié)合題意可知,所以,而發(fā)現(xiàn)所以,結(jié)合二面角找法:如果兩平面內(nèi)兩直線分別垂直兩平面交線,則該兩直線的夾角即為所求二面角,故為所求的二面角,為【點(diǎn)睛】本道題目考查了二面角的求法,尋求二面角方法:兩直線分別垂直兩平面交線,則該兩直線的夾角即為所求二面角13、##30°【解析】由直線方程得斜率,由斜率得傾斜角【詳解】試題分析:直線化成,可知,而,故故答案為:14、【解析】首先根據(jù)函數(shù)的最高點(diǎn)與最低點(diǎn)求出A,b,然后由圖像求出函數(shù)周期從而計(jì)算出,再由函數(shù)過點(diǎn)求出.【詳解】,,,解得,則,因?yàn)楹瘮?shù)過點(diǎn),所以,,解得因?yàn)?,所以?故答案為:【點(diǎn)睛】本題考查由圖像確定正弦型函數(shù)的解析式,第一步通過圖像的最值確定A,b的值,第二步通過周期確定的值,第三步通過最值點(diǎn)或者非平衡位置的點(diǎn)以及15、【解析】根據(jù)冪函數(shù)的性質(zhì),分類討論即可【詳解】將不等式轉(zhuǎn)化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此時(shí)無解;綜上,不等式的解集為:故答案為:16、8【解析】根據(jù)“斜二測畫法”原理還原出△ABC,利用邊長對(duì)應(yīng)關(guān)系計(jì)算原△ABC的面積即可詳解】根據(jù)“斜二測畫法”原理,還原出△ABC,如圖所示;由B′O′=C′O′=2,∠B'A'C'=90°,∴O′A′B′C′=2,∴原△ABC的面積為SBC×OA4×4=8故答案為8【點(diǎn)睛】本題考查了斜二測畫法中原圖和直觀圖面積的計(jì)算問題,是基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)已知條件聯(lián)立方程組求出,進(jìn)而求出函數(shù)的解析式;(2)根據(jù)已知條件求出,進(jìn)而得出不等式,利用換元法及一元二次不等式得出的范圍,再根據(jù)指數(shù)與對(duì)數(shù)互化解指數(shù)不等式即可.【小問1詳解】由,得,解得.所以的解析式為.【小問2詳解】由(2)知,,所以,由,得,即,令,則,解得或所以,即,解得.所以不等式的解集為.18、(1)(2)【解析】(1)分別求兩個(gè)集合,再求交集;(2)先求,再求.【小問1詳解】,解得:,即,,解得:,即,;【小問2詳解】,.19、(1),;(2).【解析】(1)本題首先可根據(jù)、得出,然后通過計(jì)算即可得出結(jié)果;(2)本題首先可根據(jù)題意得出以及,然后求出、以及的值,最后根據(jù)向量的數(shù)量積公式即可得出結(jié)果.【詳解】(1)因?yàn)?,,,且,,所以,解得,故?(2)因?yàn)?,,所以,因?yàn)?,,所以,,,,設(shè)與的夾角為,則,因?yàn)?,所以,向量與向量的夾角為.【點(diǎn)睛】本題考查向量平行、向量垂直以及向量的數(shù)量積的相關(guān)性質(zhì),若、且,則,考查通過向量的數(shù)量積公式求向量的夾角,考查計(jì)算能力,是中檔題.20、(1)見解析;(2)20.【解析】(1)設(shè),可得:,;(2)利用二次函數(shù)求最值即可.試題解析:(1)設(shè)米,則即,(2),當(dāng),即時(shí),取得最小值為,的最小值為20.答:的最小值為20.21、(1)見解析(2)見解析【解析】(1)根據(jù)三角形的中位線,可得,由此證得平面.(2)利用中位線證明,,故,由(1)得,證明分別平行于平面,由此可得平面平面.【詳解】(1)由題意:四棱錐的底面為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 腳手架搭設(shè)專項(xiàng)施工方案
- 個(gè)人小額無抵押借款合同協(xié)議書
- 結(jié)束協(xié)議房地產(chǎn)代理合同
- 蔬菜營銷策略購買合同
- 瓷磚訂購合同模板
- 電子元件采購合同范本
- 購銷紡織品的合同樣本
- 校園多媒體設(shè)備招標(biāo)文件
- 網(wǎng)絡(luò)購銷合同規(guī)范化管理的方法與策略
- 農(nóng)資采購合同的效力問題
- 2024年秋期國家開放大學(xué)《0-3歲嬰幼兒的保育與教育》大作業(yè)及答案
- 2024年就業(yè)保障型定向委培合同3篇
- 2024滬粵版八年級(jí)上冊(cè)物理期末復(fù)習(xí)全冊(cè)知識(shí)點(diǎn)考點(diǎn)提綱
- 人教版2024-2025學(xué)年第一學(xué)期八年級(jí)物理期末綜合復(fù)習(xí)練習(xí)卷(含答案)
- 殘聯(lián)內(nèi)部審計(jì)計(jì)劃方案
- 2024-2030年中國漫畫行業(yè)發(fā)展趨勢與投資戰(zhàn)略研究研究報(bào)告
- 儺戲面具制作課程設(shè)計(jì)
- 2024年大學(xué)生安全知識(shí)競賽題庫及答案(共190題)
- 2024中國華電集團(tuán)限公司校招+社招高頻難、易錯(cuò)點(diǎn)練習(xí)500題附帶答案詳解
- 吊裝作業(yè)施工方案
- 智能工廠梯度培育行動(dòng)實(shí)施方案
評(píng)論
0/150
提交評(píng)論