版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆湖南省長沙市雨花區(qū)南雅中學(xué)數(shù)學(xué)高二上期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線的準(zhǔn)線方程為()A B.C. D.2.已知函數(shù),若對任意兩個(gè)不等的正實(shí)數(shù),,都有,則實(shí)數(shù)的最小值為()A. B.C. D.3.等差數(shù)列中,若,,則等于()A. B.C. D.4.命題“,使”的否定是()A.,有 B.,有C.,使 D.,使5.已知是雙曲線的左焦點(diǎn),,是雙曲線右支上的動點(diǎn),則的最小值為()A.9 B.8C.7 D.66.已知拋物線上的點(diǎn)到該拋物線焦點(diǎn)的距離為,則拋物線的方程是()A. B.C. D.7.驚艷全世界的南非雙曲線大教堂是由倫敦著名的建筑事務(wù)所完成的,建筑師的設(shè)計(jì)靈感源于想法:“你永無止境的愛是多么的珍貴,人們在你雄偉的翅膀下庇護(hù)”.若將如圖所示的雙曲線大教堂外形弧線的一段近似看成雙曲線()下支的一部分,且此雙曲線的一條漸近線方程為,則此雙曲線的離心率為()A. B.C. D.8.在中,已知點(diǎn)在線段上,點(diǎn)是的中點(diǎn),,,,則的最小值為()A. B.4C. D.9.已知數(shù)列{}滿足,則()A. B.C. D.10.函數(shù)的導(dǎo)數(shù)記為,則等于()A. B.C. D.11.實(shí)數(shù)m變化時(shí),方程表示的曲線不可以是()A.直線 B.圓C橢圓 D.雙曲線12.集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.以點(diǎn)為圓心,為半徑的圓的標(biāo)準(zhǔn)方程是_____________.14.已知等差數(shù)列公差不為0,且,,等比數(shù)列,則_________.15.直線l過拋物線的焦點(diǎn)F,與拋物線交于A,B兩點(diǎn),與其準(zhǔn)線交于點(diǎn)C,若,則直線l的斜率為______.16.已知函數(shù),若過點(diǎn)存在三條直線與曲線相切,則的取值范圍為___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知拋物線的焦點(diǎn)為F,拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1(1)求拋物線C的方程;(2)過點(diǎn)F作互相垂直的兩條直線l1,l2,l1與拋物線C交于A,B兩點(diǎn),l2與拋物線C交于C,D兩點(diǎn),M,N分別為弦AB,CD的中點(diǎn),求|MF|·|NF|的最小值18.(12分)已知函數(shù)在處的切線方程為.(1)求的解析式;(2)求函數(shù)圖象上的點(diǎn)到直線的距離的最小值.19.(12分)已知等比數(shù)列滿足,.(1)求數(shù)列的前8項(xiàng)和;(2)求數(shù)列的前項(xiàng)積.20.(12分)設(shè)曲線在點(diǎn)(1,0)處的切線方程為.(1)求a,b的值;(2)求證:;(3)當(dāng),求a的取值范圍.21.(12分)如圖,四棱柱的底面為正方形,平面,,,點(diǎn)在上,且.(1)求證:;(2)求直線與平面所成角的正弦值;(3)求平面與平面夾角的余弦值.22.(10分)在平面直角坐標(biāo)系中,已知雙曲線C的焦點(diǎn)為、,實(shí)軸長為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)的直線l與曲線C交于M,N兩點(diǎn),且Q恰好為線段的中點(diǎn),求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)拋物線方程求出,進(jìn)而可得焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程.【詳解】由可得,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為:,故選:D.2、B【解析】不妨設(shè),由題意,可得,構(gòu)造函數(shù),則在上單調(diào)遞增,從而有在上恒成立,分離參數(shù)轉(zhuǎn)化為最值即可求解.【詳解】解:由題意,不妨設(shè),因?yàn)閷θ我鈨蓚€(gè)不等的正實(shí)數(shù),,都有,所以,即,構(gòu)造函數(shù),則,所以在上單調(diào)遞增,所以在上恒成立,即在上恒成立,當(dāng)時(shí),因?yàn)?,所以,所以,?shí)數(shù)的最小值為.故選:B.3、C【解析】由等差數(shù)列下標(biāo)和性質(zhì)可得.【詳解】因?yàn)?,,所?故選:C4、B【解析】根據(jù)特稱命題的否定是全稱命題即可得正確答案【詳解】存在量詞命題的否定,只需把存在量詞改成全稱量詞,并把后面的結(jié)論否定,所以“,使”的否定為“,有”,故選:B.5、A【解析】由雙曲線方程求出,再根據(jù)點(diǎn)在雙曲線的兩支之間,結(jié)合可求得答案【詳解】由,得,則,所以左焦點(diǎn)為,右焦點(diǎn),則由雙曲線的定義得,因?yàn)辄c(diǎn)在雙曲線的兩支之間,所以,所以,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)取等號,所以的最小值為9,故選:A6、B【解析】由拋物線知識得出準(zhǔn)線方程,再由點(diǎn)到焦點(diǎn)的距離等于其到準(zhǔn)線的距離求出,從而得出方程.【詳解】由題意知,則準(zhǔn)線為,點(diǎn)到焦點(diǎn)的距離等于其到準(zhǔn)線的距離,即,∴,則故選:B.7、B【解析】首先根據(jù)雙曲線的漸近線方程得到,從而得到,,,再求離心率即可.【詳解】雙曲線,,,因?yàn)殡p曲線的一條漸近線方程為,即,所以,解得,所以,,,.故選:B8、C【解析】利用三點(diǎn)共線可得,由,利用基本不等式即可求解.【詳解】由點(diǎn)是的中點(diǎn),則,又因?yàn)辄c(diǎn)在線段上,則,所以,當(dāng)且僅當(dāng),時(shí)取等號,故選:C【點(diǎn)睛】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運(yùn)算求解能力,屬于基礎(chǔ)題.9、B【解析】先將通項(xiàng)公式化簡然后用裂項(xiàng)相消法求解即可.【詳解】因?yàn)椋?故選:B10、D【解析】求導(dǎo)后代入即可.【詳解】,.故選:D.11、B【解析】根據(jù)的取值分類討論說明【詳解】時(shí)方程化為,為直線,時(shí),方程化為,為橢圓,時(shí),方程化為,為雙曲線,而,因此曲線不可能是圓故選:B12、A【解析】先解不等式求得集合再求交集.【詳解】解不等式得:,則有,解不等式,解得或,則有或,所以為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直接根據(jù)已知寫出圓的標(biāo)準(zhǔn)方程得解.【詳解】解:由題得圓的標(biāo)準(zhǔn)方程為.故答案為:14、【解析】設(shè)等差數(shù)列的公差為,由,,等比數(shù)列,可得,則的值可求【詳解】解:設(shè)等差數(shù)列的公差為,,,等比數(shù)列,,則,得,故答案為:15、【解析】由拋物線方程求出焦點(diǎn)坐標(biāo)與準(zhǔn)線方程,設(shè)直線為,、,即可得到的坐標(biāo),再聯(lián)立直線與拋物線方程,消元列出韋達(dá)定理,表示出、的坐標(biāo),根據(jù)得到方程,求出,即可得解;【詳解】解:拋物線方程為,則焦點(diǎn),準(zhǔn)線為,設(shè)直線為,、,則,由,消去得,所以,,則,,因?yàn)椋?,所以,所以,解得,所以,即直線為,所以直線的斜率為;故答案為:16、【解析】設(shè)過M的切線切點(diǎn)為,求出切線方程,參變分離得,令,則原問題等價(jià)于y=g(x)與y=-m-2的圖像有三個(gè)交點(diǎn),根據(jù)導(dǎo)數(shù)研究g(x)的圖像即可求出m的范圍【詳解】,設(shè)過點(diǎn)的直線與曲線相切于點(diǎn),則,化簡得,,令,則過點(diǎn)存在三條直線與曲線相切等價(jià)于y=g(x)與y=-m-2的圖像有三個(gè)交點(diǎn)∵,故當(dāng)x<0或x>1時(shí),,g(x)單調(diào)遞增;當(dāng)0<x<1時(shí),,g(x)單調(diào)遞減,又,,∴g(x)如圖,∴-2<-m-2<0,即故答案為:﹒三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)8【解析】(1)由拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,即可求得拋物線的方程;(2)設(shè)直線AB的斜率為k,則直線CD的斜率為,得到直線AB的方程為,聯(lián)立方程,求得,進(jìn)而求得的坐標(biāo),得到的表達(dá)式,結(jié)合基本不等式,即可求解.【小問1詳解】解:因?yàn)閽佄锞€C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,解得,所以拋物線C的方程為【小問2詳解】解:由(1)可知焦點(diǎn)為F(1,0),由已知可得ABCD,所以直線AB,CD的斜率都存在且均不為0,設(shè)直線AB斜率為k,則直線CD的斜率為,所以直線AB的方程為,聯(lián)立方程,消去x得,設(shè)點(diǎn)A(x1,y1),B(x2,y2),則,因?yàn)镸(xM,yM)為弦AB的中點(diǎn),所以,由,得,所以點(diǎn),同理可得,所以,=,所以,當(dāng)且僅當(dāng),即時(shí),等號成立,所以的最小值為18、(1);(2).【解析】(1)由題可得,然后利用導(dǎo)數(shù)的幾何意義即求;(2)由題可得切點(diǎn)到直線的距離最小,即得.【小問1詳解】∵函數(shù),∴的定義域?yàn)?,,∴在處切線的斜率為,由切線方程可知切點(diǎn)為,而切點(diǎn)也在函數(shù)圖象上,解得,∴的解析式為;【小問2詳解】由于直線與直線平行,直線與函數(shù)在處相切,所以切點(diǎn)到直線的距離最小,最小值為,故函數(shù)圖象上的點(diǎn)到直線的距離的最小值為.19、(1)(2)【解析】(1)設(shè)等比數(shù)列的公比為,由,求出公比,然后由等比數(shù)列前項(xiàng)和公式可得答案.(2)先得出通項(xiàng)公式,然后可得,由指數(shù)的運(yùn)算性質(zhì),結(jié)合由等差數(shù)列前項(xiàng)和公式可得答案.小問1詳解】設(shè)等比數(shù)列的公比為,,解得所以所以【小問2詳解】20、(1)(2)證明見解析(3)【解析】(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義,令x=1處的切線的斜率等1,結(jié)合,即可求得a和b的值;(2)利用(1)的結(jié)論,構(gòu)造函數(shù),求求導(dǎo)數(shù),判斷單調(diào)性,求出最小值即可證明;(3)根據(jù)條件構(gòu)造函數(shù),求出其導(dǎo)數(shù),分類討論導(dǎo)數(shù)的值的情況,根據(jù)單調(diào)性,判斷函數(shù)的最小值情況,即可求得答案.【小問1詳解】由題意知:,因?yàn)榍€在點(diǎn)(1,0)處的切線方程為,故,即;【小問2詳解】證明:由(1)知:,令,則,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以當(dāng)時(shí),取得極小值,也即最小值,最小值為,故,即成立;【小問3詳解】當(dāng),即,(),設(shè),(),則,當(dāng)時(shí),由得,此時(shí),此時(shí)在時(shí)單調(diào)遞增,,適合題意;當(dāng)時(shí),,此時(shí)在時(shí)單調(diào)遞增,,適合題意;當(dāng)時(shí),,此時(shí),此時(shí)在時(shí)單調(diào)遞增,,適合題意;當(dāng)時(shí),,此時(shí)在內(nèi),,在內(nèi),,故,顯然時(shí),,不滿足當(dāng)恒成立,綜上述:.21、(1)證明見解析(2)(3)【解析】(1)以為原點(diǎn),所在的直線為軸的正方向建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量可得,即平面,再由線面垂直的性質(zhì)可得答案;(2)設(shè)直線與平面所成角的為,可得答案;(3)由二面角的向量求法可得答案.【小問1詳解】以為原點(diǎn),所在的直線為軸的正方向建立空間直角坐標(biāo)系,則,,,,,所以,,,設(shè)平面的一個(gè)法向量為,所以,即,令,則,所以,所以,所以平面,平面,所以.【小問2詳解】,所以,由(1)平面的一個(gè)法向量為,設(shè)直線與平面所成角的為,所以直線與平面所成角的正弦值.【小問3詳解】由已知為平面的一個(gè)法向量,且,由(1)平面的一個(gè)法向量為,所以,由圖可得平面與平面夾角的余弦值為.22、(1)(2).【解析】(1)根據(jù)條件,結(jié)合雙曲線定義即可求得雙曲線的標(biāo)準(zhǔn)方程.(2)當(dāng)斜率不存在時(shí),不符合題意;當(dāng)斜率存在時(shí),設(shè)出直線方程,聯(lián)立雙曲線,變形后由中點(diǎn)坐標(biāo)公式可求得斜率,即可求得直線方程.【詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海洋能并網(wǎng)技術(shù)挑戰(zhàn)-深度研究
- 古典文學(xué)在當(dāng)代的傳播與影響-深度研究
- 2025年度國有企業(yè)員工聘用合同
- 2025年度解除勞動合同證明書模板制作及市場分析協(xié)議
- 二零二五年度診所掛證負(fù)責(zé)人安全保障與免責(zé)合同
- 2025年度企業(yè)增值稅納稅申報(bào)代理服務(wù)合同范本
- 二零二五年度電商企業(yè)電商數(shù)據(jù)安全合同
- 2025年度酒店與旅游平臺戰(zhàn)略合作合同
- 2025年度短視頻影視作品拍攝與版權(quán)授權(quán)合同
- 2025年度改簽用人單位高端人才派遣服務(wù)合同細(xì)則
- 2024年蘭州新區(qū)實(shí)正鑫熱電有限公司招聘筆試沖刺題(帶答案解析)
- 血透室護(hù)士長述職
- (正式版)JTT 1218.4-2024 城市軌道交通運(yùn)營設(shè)備維修與更新技術(shù)規(guī)范 第4部分:軌道
- 2024年漢中市行政事業(yè)單位國有資產(chǎn)管理委員會辦公室四級主任科員公務(wù)員招錄1人《行政職業(yè)能力測驗(yàn)》模擬試卷(答案詳解版)
- 客車交通安全培訓(xùn)課件
- 藝術(shù)培訓(xùn)校長述職報(bào)告
- ICU新進(jìn)人員入科培訓(xùn)-ICU常規(guī)監(jiān)護(hù)與治療課件
- 人教版一年數(shù)學(xué)下冊全冊分層作業(yè)設(shè)計(jì)
- 選擇性必修一 期末綜合測試(二)(解析版)2021-2022學(xué)年人教版(2019)高二數(shù)學(xué)選修一
- 學(xué)校制度改進(jìn)
- 各行業(yè)智能客服占比分析報(bào)告
評論
0/150
提交評論